Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Gigascience ; 112022 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-35902092

RESUMEN

BACKGROUND: Amplicon sequencing (metabarcoding) is a common method to survey diversity of environmental communities whereby a single genetic locus is amplified and sequenced from the DNA of whole or partial organisms, organismal traces (e.g., skin, mucus, feces), or microbes in an environmental sample. Several software packages exist for analyzing amplicon data, among which QIIME 2 has emerged as a popular option because of its broad functionality, plugin architecture, provenance tracking, and interactive visualizations. However, each new analysis requires the user to keep track of input and output file names, parameters, and commands; this lack of automation and standardization is inefficient and creates barriers to meta-analysis and sharing of results. FINDINGS: We developed Tourmaline, a Python-based workflow that implements QIIME 2 and is built using the Snakemake workflow management system. Starting from a configuration file that defines parameters and input files-a reference database, a sample metadata file, and a manifest or archive of FASTQ sequences-it uses QIIME 2 to run either the DADA2 or Deblur denoising algorithm; assigns taxonomy to the resulting representative sequences; performs analyses of taxonomic, alpha, and beta diversity; and generates an HTML report summarizing and linking to the output files. Features include support for multiple cores, automatic determination of trimming parameters using quality scores, representative sequence filtering (taxonomy, length, abundance, prevalence, or ID), support for multiple taxonomic classification and sequence alignment methods, outlier detection, and automated initialization of a new analysis using previous settings. The workflow runs natively on Linux and macOS or via a Docker container. We ran Tourmaline on a 16S ribosomal RNA amplicon data set from Lake Erie surface water, showing its utility for parameter optimization and the ability to easily view interactive visualizations through the HTML report, QIIME 2 viewer, and R- and Python-based Jupyter notebooks. CONCLUSION: Automated workflows like Tourmaline enable rapid analysis of environmental amplicon data, decreasing the time from data generation to actionable results. Tourmaline is available for download at github.com/aomlomics/tourmaline.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Programas Informáticos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ARN Ribosómico 16S/genética , Silicatos , Flujo de Trabajo
2.
Appl Environ Microbiol ; 88(9): e0246421, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35438519

RESUMEN

Cyanobacterial harmful algal blooms (cyanoHABs) degrade freshwater ecosystems globally. Microcystis aeruginosa often dominates cyanoHABs and produces microcystin (MC), a class of hepatotoxins that poses threats to human and animal health. Microcystin toxicity is influenced by distinct structural elements across a diversity of related molecules encoded by variant mcy operons. However, the composition and distribution of mcy operon variants in natural blooms remain poorly understood. Here, we characterized the variant composition of mcy genes in western Lake Erie Microcystis blooms from 2014 and 2018. Sampling was conducted across several spatial and temporal scales, including different bloom phases within 2014, extensive spatial coverage on the same day (2018), and frequent, autonomous sampling over a 2-week period (2018). Mapping of metagenomic and metatranscriptomic sequences to reference sequences revealed three Microcystis mcy genotypes: complete (all genes present [mcyA-J]), partial (truncated mcyA, complete mcyBC, and missing mcyD-J), and absent (no mcy genes). We also detected two different variants of mcyB that may influence the production of microcystin congeners. The relative abundance of these genotypes was correlated with pH and nitrate concentrations. Metatranscriptomic analysis revealed that partial operons were, at times, the most abundant genotype and expressed in situ, suggesting the potential biosynthesis of truncated products. Quantification of genetic divergence between genotypes suggests that the observed strains are the result of preexisting heterogeneity rather than de novo mutation during the sampling period. Overall, our results show that natural Microcystis populations contain several cooccurring mcy genotypes that dynamically shift in abundance spatiotemporally via strain succession and likely influence the observed diversity of the produced congeners. IMPORTANCE Cyanobacteria are responsible for producing microcystins (MCs), a class of potent and structurally diverse toxins, in freshwater systems around the world. While microcystins have been studied for over 50 years, the diversity of their chemical forms and how this variation is encoded at the genetic level remain poorly understood, especially within natural populations of cyanobacterial harmful algal blooms (cyanoHABs). Here, we leverage community DNA and RNA sequences to track shifts in mcy genes responsible for producing microcystin, uncovering the relative abundance, expression, and variation of these genes. We studied this phenomenon in western Lake Erie, which suffers annually from cyanoHAB events, with impacts on drinking water, recreation, tourism, and commercial fishing.


Asunto(s)
Cianobacterias , Microcystis , Cianobacterias/genética , Ecosistema , Genotipo , Lagos/microbiología , Microcistinas/genética , Microcistinas/metabolismo , Microcystis/genética , Microcystis/metabolismo , Operón
3.
Harmful Algae ; 108: 102102, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34588123

RESUMEN

Microcystis is the predominant genus of harmful cyanobacterium in both Lake Erie and Saginaw Bay of Lake Huron and has the capacity to regulate the buoyancy of its colonies, sinking under certain conditions while floating towards the surface in others. Understanding the factors that control buoyancy is critical for interpretation of remote sensing data, modeling and forecasting harmful algal blooms within these two systems. To determine if Microcystis colony buoyancy in the two lakes responds similarly to diurnal light cycles, colony buoyant velocity (floating/sinking terminal velocity in a quiescent water column) and size were measured after manipulating the intensity of sunlight. Overall, there were more positively buoyant (floating) colonies in Lake Erie while most of the colonies in Saginaw Bay were negatively buoyant (sinking). In Lake Erie the colonies became less buoyant at increased light intensities and were less buoyant in the afternoon than in the morning. In both lakes, apparent colony density was more variable among small colonies (< 200 µm), whereas larger colonies showed a diminished response of density to light intensity and duration. These findings suggest that colony density becomes less plastic as colonies increase in size, leading to a weak relationship between size and velocity. These relationships may ultimately affect how the bloom is transported throughout each system and will help explain observed differences in vertical distribution and movement of Microcystis in the two lakes.


Asunto(s)
Cianobacterias , Microcystis , Bahías , Floraciones de Algas Nocivas , Lagos
4.
Environ Microbiol ; 19(3): 1149-1162, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28026093

RESUMEN

Human activities are causing a global proliferation of cyanobacterial harmful algal blooms (CHABs), yet we have limited understanding of how these events affect freshwater bacterial communities. Using weekly data from western Lake Erie in 2014, we investigated how the cyanobacterial community varied over space and time, and whether the bloom affected non-cyanobacterial (nc-bacterial) diversity and composition. Cyanobacterial community composition fluctuated dynamically during the bloom, but was dominated by Microcystis and Synechococcus OTUs. The bloom's progression revealed potential impacts to nc-bacterial diversity. Nc-bacterial evenness displayed linear, unimodal, or no response to algal pigment levels, depending on the taxonomic group. In addition, the bloom coincided with a large shift in nc-bacterial community composition. These shifts could be partitioned into components predicted by pH, chlorophyll a, temperature, and water mass movements. Actinobacteria OTUs showed particularly strong correlations to bloom dynamics. AcI-C OTUs became more abundant, while acI-A and acI-B OTUs declined during the bloom, providing evidence of niche partitioning at the sub-clade level. Thus, our observations in western Lake Erie support a link between CHABs and disturbances to bacterial community diversity and composition. Additionally, the short recovery of many taxa after the bloom indicates that bacterial communities may exhibit resilience to CHABs.


Asunto(s)
Cianobacterias/crecimiento & desarrollo , Cianobacterias/aislamiento & purificación , Floraciones de Algas Nocivas , Clorofila/metabolismo , Clorofila A , Cianobacterias/clasificación , Cianobacterias/genética , Humanos , Lagos/análisis , Lagos/microbiología , Movimientos del Agua
5.
PLoS One ; 11(6): e0157953, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27336619

RESUMEN

Black band disease (BBD) is a cyanobacterial-dominated polymicrobial mat that propagates on and migrates across coral surfaces, necrotizing coral tissue. Culture-based laboratory studies have investigated cyanobacteria and heterotrophic bacteria isolated from BBD, but the metabolic potential of various BBD microbial community members and interactions between them remain poorly understood. Here we report genomic insights into the physiological and metabolic potential of the BBD-associated cyanobacterium Geitlerinema sp. BBD 1991 and six associated bacteria that were also present in the non-axenic culture. The essentially complete genome of Geitlerinema sp. BBD 1991 contains a sulfide quinone oxidoreductase gene for oxidation of sulfide, suggesting a mechanism for tolerating the sulfidic conditions of BBD mats. Although the operon for biosynthesis of the cyanotoxin microcystin was surprisingly absent, potential relics were identified. Genomic evidence for mixed-acid fermentation indicates a strategy for energy metabolism under the anaerobic conditions present in BBD during darkness. Fermentation products may supply carbon to BBD heterotrophic bacteria. Among the six associated bacteria in the culture, two are closely related to organisms found in culture-independent studies of diseased corals. Their metabolic pathways for carbon and sulfur cycling, energy metabolism, and mechanisms for resisting coral defenses suggest adaptations to the coral surface environment and biogeochemical roles within the BBD mat. Polysulfide reductases were identified in a Flammeovirgaceae genome (Bacteroidetes) and the sox pathway for sulfur oxidation was found in the genome of a Rhodospirillales bacterium (Alphaproteobacteria), revealing mechanisms for sulfur cycling, which influences virulence of BBD. Each genomic bin possessed a pathway for conserving energy from glycerol degradation, reflecting adaptations to the glycerol-rich coral environment. The presence of genes for detoxification of reactive oxygen species and resistance to antibiotics suggest mechanisms for combating coral defense strategies. This study builds upon previous research on BBD and provides new insights into BBD disease etiology.


Asunto(s)
Enfermedades de los Animales/microbiología , Antozoos/microbiología , Cianobacterias/genética , Genoma Bacteriano , Genómica , Animales , Biología Computacional , Cianobacterias/clasificación , Cianobacterias/metabolismo , Metabolismo Energético , Fermentación , Genómica/métodos , Procesos Heterotróficos , Secuenciación de Nucleótidos de Alto Rendimiento , Inactivación Metabólica/genética , Anotación de Secuencia Molecular , Operón , Fotosíntesis , Filogenia , ARN Ribosómico 16S/genética , Sulfuros/metabolismo
6.
Front Microbiol ; 6: 495, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26042114

RESUMEN

Glaciers are geologically important yet transient ecosystems that support diverse, biogeochemically significant microbial communities. During the melt season glaciers undergo dramatic physical, geochemical, and biological changes that exert great influence on downstream biogeochemical cycles. Thus, we sought to understand the temporal melt-season dynamics of microbial communities and associated geochemistry at the terminus of Lemon Creek Glacier (LCG) in coastal southern Alaska. Due to late season snowfall, sampling of LCG occurred in three interconnected areas: proglacial Lake Thomas, the lower glacial outflow stream, and the glacier's terminus. LCG associated microbial communities were phylogenetically diverse and varied by sampling location. However, Betaproteobacteria, Alphaproteobacteria, and Bacteroidetes dominated communities at all sampling locations. Strict anaerobic groups such as methanogens, SR1, and OP11 were also recovered from glacier outflows, indicating anoxic conditions in at least some portions of the LCG subglacial environment. Microbial community structure was significantly correlated with sampling location and sodium concentrations. Microbial communities sampled from terminus outflow waters exhibited day-to-day fluctuation in taxonomy and phylogenetic similarity. However, these communities were not significantly different from randomly constructed communities from all three sites. These results indicate that glacial outflows share a large proportion of phylogenetic overlap with downstream environments and that the observed significant shifts in community structure are driven by changes in relative abundance of different taxa, and not complete restructuring of communities. We conclude that LCG glacial discharge hosts a diverse and relatively stable microbiome that shifts at fine taxonomic scales in response to geochemistry and likely water residence time.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...