Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 14: 1253362, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38094626

RESUMEN

For successful elucidation of a food-borne infection chain, the availability of high-quality sequencing data from suspected microbial contaminants is a prerequisite. Commonly, those investigations are a joint effort undertaken by different laboratories and institutes. To analyze the extent of variability introduced by differing wet-lab procedures on the quality of the sequence data we conducted an interlaboratory study, involving four bacterial pathogens, which account for the majority of food-related bacterial infections: Campylobacter spp., Shiga toxin-producing Escherichia coli, Listeria monocytogenes, and Salmonella enterica. The participants, ranging from German federal research institutes, federal state laboratories to universities and companies, were asked to follow their routine in-house protocols for short-read sequencing of 10 cultures and one isolated bacterial DNA per species. Sequence and assembly quality were then analyzed centrally. Variations within isolate samples were detected with SNP and cgMLST calling. Overall, we found that the quality of Illumina raw sequence data was high with little overall variability, with one exception, attributed to a specific library preparation kit. The variability of Ion Torrent data was higher, independent of the investigated species. For cgMLST and SNP analysis results, we found that technological sequencing artefacts could be reduced by the use of filters, and that SNP analysis was more suited than cgMLST to compare data of different contributors. Regarding the four species, a minority of Campylobacter isolate data showed the in comparison highest divergence with regard to sequence type and cgMLST analysis. We additionally compared the assembler SPAdes and SKESA for their performance on the Illumina data sets of the different species and library preparation methods and found overall similar assembly quality metrics and cgMLST statistics.

2.
EMBO Rep ; 24(9): e54709, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37458257

RESUMEN

Endocytosis regulates the turnover of cell surface localized receptors, which are crucial for plants to rapidly respond to stimuli. The evolutionary ancient TPLATE complex (TPC) plays an essential role in endocytosis in Arabidopsis plants. Knockout or knockdown of single TPC subunits causes male sterility and seedling lethality phenotypes, complicating analysis of the roles of TPC during plant development. Partially functional alleles of TPC subunits however only cause mild developmental deviations. Here, we took advantage of the partially functional TPLATE allele, WDXM2, to investigate a role for TPC-dependent endocytosis in receptor-mediated signaling. We discovered that reduced TPC-dependent endocytosis confers a hypersensitivity to very low doses of CLAVATA3 peptide signaling. This hypersensitivity correlated with the abundance of the CLAVATA3 receptor protein kinase CLAVATA1 at the plasma membrane. Genetic and biochemical analysis as well as live-cell imaging revealed that TPC-dependent regulation of CLAVATA3-dependent internalization of CLAVATA1 from the plasma membrane is required for shoot stem cell homeostasis. Our findings provide evidence that TPC-mediated endocytosis and degradation of CLAVATA1 is a mechanism to dampen CLAVATA3-mediated signaling during plant development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Endocitosis , Regulación de la Expresión Génica de las Plantas , Meristema/genética , Plantas/metabolismo , Receptores de Superficie Celular/metabolismo , Transducción de Señal
3.
Foods ; 12(5)2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36900485

RESUMEN

DNA-metabarcoding is becoming more widely used for routine authentication of meat-based food and feed products. Several methods validating species identification methods through amplicon sequencing have already been published. These use a variety of barcodes and analysis workflows, however, no methodical comparison of available algorithms and parameter optimization are published hitherto for meat-based products' authenticity. Additionally, many published methods use very small subsets of the available reference sequences, thereby limiting the potential of the analysis and leading to over-optimistic performance estimates. We here predict and compare the ability of published barcodes to distinguish taxa in the BLAST NT database. We then use a dataset of 79 reference samples, spanning 32 taxa, to benchmark and optimize a metabarcoding analysis workflow for 16S rDNA Illumina sequencing. Furthermore, we provide recommendations as to the parameter choices, sequencing depth, and thresholds that should be used to analyze meat metabarcoding sequencing experiments. The analysis workflow is publicly available, and includes ready-to-use tools for validation and benchmarking.

4.
Foods ; 10(11)2021 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-34829156

RESUMEN

The substitution of more appreciated animal species by animal species of lower commercial value is a common type of meat product adulteration. DNA metabarcoding, the combination of DNA barcoding with next-generation sequencing (NGS), plays an increasing role in food authentication. In the present study, we investigated the applicability of a DNA metabarcoding method for routine analysis of mammalian and poultry species in food and pet food products. We analyzed a total of 104 samples (25 reference samples, 56 food products and 23 pet food products) by DNA metabarcoding and by using a commercial DNA array and/or by real-time PCR. The qualitative and quantitative results obtained by the DNA metabarcoding method were in line with those obtained by PCR. Results from the independent analysis of a subset of seven reference samples in two laboratories demonstrate the robustness and reproducibility of the DNA metabarcoding method. DNA metabarcoding is particularly suitable for detecting unexpected species ignored by targeted methods such as real-time PCR and can also be an attractive alternative with respect to the expenses as indicated by current data from the cost accounting of the AGES laboratory. Our results for the commercial samples show that in addition to food products, DNA metabarcoding is particularly applicable to pet food products, which frequently contain multiple animal species and are also highly prone to adulteration as indicated by the high portion of analyzed pet food products containing undeclared species.

5.
Elife ; 102021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34643181

RESUMEN

Stem cell homeostasis in plant shoot meristems requires tight coordination between stem cell proliferation and cell differentiation. In Arabidopsis, stem cells express the secreted dodecapeptide CLAVATA3 (CLV3), which signals through the leucine-rich repeat (LRR)-receptor kinase CLAVATA1 (CLV1) and related CLV1-family members to downregulate expression of the homeodomain transcription factor WUSCHEL (WUS). WUS protein moves from cells below the stem cell domain to the meristem tip and promotes stem cell identity, together with CLV3 expression, generating a negative feedback loop. How stem cell activity in the meristem centre is coordinated with organ initiation and cell differentiation at the periphery is unknown. We show here that the CLE40 gene, encoding a secreted peptide closely related to CLV3, is expressed in the SAM in differentiating cells in a pattern complementary to that of CLV3. CLE40 promotes WUS expression via BAM1, a CLV1-family receptor, and CLE40 expression is in turn repressed in a WUS-dependent manner. Together, CLE40-BAM1-WUS establish a second negative feedback loop. We propose that stem cell homeostasis is achieved through two intertwined pathways that adjust WUS activity and incorporate information on the size of the stem cell domain, via CLV3-CLV1, and on cell differentiation via CLE40-BAM1.


Plants are sessile lifeforms that have evolved many ways to overcome this challenge. For example, they can quickly adapt to their environment, and they can grow new organs, such as leaves and flowers, throughout their lifetime. Stem cells are important precursor cells in plants (and animals) that can divide and specialize into other types of cells to help regrow leaves and flowers. A region in the plant called meristem, which can be found in the roots and shoots, continuously produces new organs in the peripheral zone of the meristem by maintaining a small group of stem cells in the central zone of the meristem. This is regulated by a signalling pathway called CLV and a molecule produced by the stem cells in the central zone, called CLV3. Together, they keep a protein called WUS (found in the deeper meristem known as the organizing zone) at low levels. WUS, in turn, increases the production of stem cells that generate CLV3. However, so far it was unclear how the number of stem cells is coordinated with the rate of organ production in the peripheral zone. To find out more, Schlegel et al. studied cells in the shoot meristems from the thale cress Arabidopsis thaliana. The researchers found that cells in the peripheral zone produce a molecule called CLE40, which is similar to CLV3. Unlike CLV3, however, CLE40 boosts the levels of WUS, thereby increasing the number of stem cells. In return, WUS reduces the production of CLE40 in the central zone and the organizing centre. This system allows meristems to adapt to growing at different speeds. These results help reveal how the activity of plant meristems is regulated to enable plants to grow new structures throughout their life. Together, CLV3 and CLE40 signalling in meristems regulate stem cells to maintain a small population that is able to respond to changing growth rates. This understanding of stem cell control could be further developed to improve the productivity of crops.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Homeodominio/genética , Brotes de la Planta/fisiología , Proteínas Serina-Treonina Quinasas/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Diferenciación Celular , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/metabolismo , Homeostasis , Células Vegetales/fisiología , Brotes de la Planta/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/genética , Células Madre/fisiología
6.
Plant Direct ; 3(12): e00189, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31844834

RESUMEN

Receptor-like kinases (RLK) and receptor-like proteins (RLP) often interact in a combinatorial manner depending on tissue identity, membrane domains, or endo- and exogenous cues, and the same RLKs or RLPs can generate different signaling outputs depending on the composition of the receptor complexes they are involved in. Investigation of their interaction partners in a spatial and dynamic way is therefore of prime interest to understand their functions. This is, however, limited by the technical complexity of assessing it in endogenous conditions. A solution to close this gap is to determine protein interaction directly in the relevant tissues at endogenous expression levels using Förster resonance energy transfer (FRET). The ideal fluorophore pair for FRET must, however, fulfil specific requirements: (a) The emission and excitation spectra of the donor and acceptor, respectively, must overlap; (b) they should not interfere with proper folding, activity, or localization of the fusion proteins; (c) they should be sufficiently photostable in plant cells. Furthermore, the donor must yield sufficient photon counts at near-endogenous protein expression levels. Although many fluorescent proteins were reported to be suitable for FRET experiments, only a handful were already described for applications in plants. Herein, we compare a range of fluorophores, assess their usability to study RLK interactions by FRET-based fluorescence lifetime imaging (FLIM) and explore their differences in FRET efficiency. Our analysis will help to select the optimal fluorophore pair for diverse FRET applications.

7.
Trends Plant Sci ; 22(8): 718-725, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28668510

RESUMEN

Proteins often act in complexes assembled via protein-protein interaction domains. The sterile alpha motif (SAM) domain is one of the most prominent interaction domains in animals and is present in proteins of diverse functions. This domain allows head-to-tail closed oligomerisation or polymer formation resulting in homo- and/or heterocomplexes that have been shown to be important for proper protein localisation and function. In plants this domain is also present but has been poorly studied except for recent studies on the LEAFY floral regulator and the tRNA import component (TRIC)1/2 proteins. Here we catalogue SAM domain-containing proteins from arabidopsis (Arabidopsis thaliana), compare plant and other eukaryotic SAM domains, and perform homology modelling to probe plant SAM domain interaction capabilities.


Asunto(s)
Arabidopsis/genética , Modelos Moleculares , Motivo alfa Estéril , Secuencia de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Modelos Estructurales , Dominios y Motivos de Interacción de Proteínas , Alineación de Secuencia
8.
Curr Opin Plant Biol ; 35: 15-22, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27721031

RESUMEN

In Arabidopsis, floral meristems appear on the flanks of the inflorescence meristem. Their stereotypic development, ultimately producing the four whorls of floral organs, is essentially controlled by a network coordinating growth and cell-fate determination. This network integrates hormonal signals, transcriptional regulators, and mechanical constraints. Mechanisms regulating floral meristem formation have been studied at many different scales, from protein structure to tissue modeling. In this paper, we review recent findings related to the emergence of the floral meristem and floral fate determination and examine how this field has been impacted by recent technological developments.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Flores/crecimiento & desarrollo , Meristema/crecimiento & desarrollo , Arabidopsis/genética , Diferenciación Celular , Flores/genética , Meristema/genética
9.
Nat Commun ; 7: 11222, 2016 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-27097556

RESUMEN

Deciphering the mechanisms directing transcription factors (TFs) to specific genome regions is essential to understand and predict transcriptional regulation. TFs recognize short DNA motifs primarily through their DNA-binding domain. Some TFs also possess an oligomerization domain suspected to potentiate DNA binding but for which the genome-wide influence remains poorly understood. Here we focus on the LEAFY transcription factor, a master regulator of flower development in angiosperms. We have determined the crystal structure of its conserved amino-terminal domain, revealing an unanticipated Sterile Alpha Motif oligomerization domain. We show that this domain is essential to LEAFY floral function. Moreover, combined biochemical and genome-wide assays suggest that oligomerization is required for LEAFY to access regions with low-affinity binding sites or closed chromatin. This finding shows that domains that do not directly contact DNA can nevertheless have a profound impact on the DNA binding landscape of a TF.


Asunto(s)
Proteínas de Arabidopsis/química , Arabidopsis/genética , Flores/genética , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Oryza/genética , Factores de Transcripción/química , Secuencia de Aminoácidos , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sitios de Unión , Cromatina/química , Cromatina/metabolismo , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Flores/crecimiento & desarrollo , Flores/metabolismo , Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Modelos Moleculares , Datos de Secuencia Molecular , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Unión Proteica , Multimerización de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética
10.
Nucleic Acids Res ; 44(D1): D110-5, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26531826

RESUMEN

JASPAR (http://jaspar.genereg.net) is an open-access database storing curated, non-redundant transcription factor (TF) binding profiles representing transcription factor binding preferences as position frequency matrices for multiple species in six taxonomic groups. For this 2016 release, we expanded the JASPAR CORE collection with 494 new TF binding profiles (315 in vertebrates, 11 in nematodes, 3 in insects, 1 in fungi and 164 in plants) and updated 59 profiles (58 in vertebrates and 1 in fungi). The introduced profiles represent an 83% expansion and 10% update when compared to the previous release. We updated the structural annotation of the TF DNA binding domains (DBDs) following a published hierarchical structural classification. In addition, we introduced 130 transcription factor flexible models trained on ChIP-seq data for vertebrates, which capture dinucleotide dependencies within TF binding sites. This new JASPAR release is accompanied by a new web tool to infer JASPAR TF binding profiles recognized by a given TF protein sequence. Moreover, we provide the users with a Ruby module complementing the JASPAR API to ease programmatic access and use of the JASPAR collection of profiles. Finally, we provide the JASPAR2016 R/Bioconductor data package with the data of this release.


Asunto(s)
Bases de Datos Genéticas , Elementos Reguladores de la Transcripción , Factores de Transcripción/metabolismo , Animales , Sitios de Unión , Proteínas de Unión al ADN/química , Estructura Terciaria de Proteína , Programas Informáticos , Factores de Transcripción/química
11.
Development ; 141(6): 1222-7, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24553285

RESUMEN

In Arabidopsis seeds, embryo growth is coordinated with endosperm breakdown. Mutants in the endosperm-specific gene ZHOUPI (ZOU), which encodes a unique basic helix-loop-helix (bHLH) transcription factor, have an abnormal endosperm that persists throughout seed development, significantly impeding embryo growth. Here we show that loss of function of the bHLH-encoding gene INDUCER OF CBP EXPRESSION 1 (ICE1) causes an identical endosperm persistence phenotype. We show that ZOU and ICE1 are co-expressed in the endosperm and interact in yeast via their bHLH domains. We show both genetically and in a heterologous plant system that, despite the fact that both ZOU and ICE1 can form homodimers in yeast, their role in endosperm breakdown requires their heterodimerization. Consistent with this conclusion, we confirm that ZOU and ICE1 regulate the expression of common target genes in the developing endosperm. Finally, we show that heterodimerization of ZOU and ICE1 is likely to be necessary for their binding to specific targets, rather than for their nuclear localization in the endosperm. By comparing our results with paradigms of bHLH function and evolution in animal systems we propose that the ZOU/ICE1 complex might have ancient origins, acquiring novel megagametophyte-specific functions in heterosporous land plants that were conserved in the angiosperm endosperm.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/embriología , Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/química , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Endospermo/embriología , Endospermo/genética , Endospermo/metabolismo , Evolución Molecular , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Hibridación in Situ , Mutación , Plantas Modificadas Genéticamente , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Factores de Transcripción/genética , Técnicas del Sistema de Dos Híbridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...