Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 36(18): e2311305, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38270280

RESUMEN

Semitransparent organic photovoltaics (ST-OPVs) offer promising prospects for application in building-integrated photovoltaic systems and greenhouses, but further improvement of their performance faces a delicate trade-off between the two competing indexes of power conversion efficiency (PCE) and average visible transmittance (AVT). Herein, the authors take advantage of coupling plasmonics with the optical design of ST-OPVs to enhance near-infrared absorption and hence simultaneously improve efficiency and visible transparency to the maximum extent. By integrating core-bishell PdCu@Au@SiO2 nanotripods that act as optically isotropic Lambertian sources with near-infrared-customized localized surface plasmon resonance in an optimal ternary PM6:BTP-eC9:L8-BO-based ST-OPV, it is shown that their interplay with a multilayer optical coupling layer, consisting of ZnS(130 nm)/Na3AlF6(60 nm)/WO3(100 nm)/LaF3(50 nm) identified from high-throughput optical screening, leads to a record-high PCE of 16.14% (certified as 15.90%) along with an excellent AVT of 33.02%. The strong enhancement of the light utilization efficiency by ≈50% as compared to the counterpart device without optical engineering provides an encouraging and universal pathway for promoting breakthroughs in ST-OPVs from meticulous optical design.

2.
ACS Appl Mater Interfaces ; 15(42): 49436-49446, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37821424

RESUMEN

Near-infrared (NIR) narrowband organic photodetectors (OPDs) can be essential building blocks for emerging applications including wireless optical communication and light detection, but further improvement of their performances remains to be a great challenge. Herein, a light manipulation strategy combining solution-processable gold nanorings (AuNRs)-based hole transporting layer (HTL) and an optical microcavity is proposed to achieve high-performance NIR narrowband OPDs. Optical microcavities with a Fabry-Pérot resonator structure, guided by theoretical simulation, are coupled with PM6:BTP-eC9-based OPDs to exhibit highly tunable NIR selectivity. The further integration of AuNRs array with NIR-customized localized surface plasmon resonance in the HTL of the NIR narrowband OPDs enables evident NIR absorption enhancement, yielding a specific detectivity exceeding 1013 Jones (1.5 × 1012 Jones, calculated from noise spectral density) at 820 nm, along with a finely selective photoresponse (full width at half-maximum of 80 nm) and a 3-fold increase in photocurrent intensity. Finally, the practical application of our OPDs is demonstrated in an NIR communication system. These results reveal the great potential of an appropriate optical design for developing highly performing NIR narrowband OPDs.

3.
Small ; 19(23): e2207505, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36890774

RESUMEN

Niobium-carbide (Nb2 C) MXene as a new 2D material has shown great potential for application in photovoltaics due to its excellent electrical conductivity, large surface area, and superior transmittance. In this work, a novel solution-processable poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS)-Nb2 C hybrid hole transport layer (HTL) is developed to enhance the device performance of organic solar cells (OSCs). By optimizing the doping ratio of Nb2 C MXene in PEDOT:PSS, the best power convention efficiency (PCE) of 19.33% can be achieved for OSCs based on the ternary active layer of PM6:BTP-eC9:L8-BO, which is so far the highest value among those of single junction OSCs using 2D materials. It is found that the addition of Nb2 C MXene can facilitate the phase separation of the PEDOT and PSS segments, thus improving the conductivity and work function of PEDOT:PSS. The significantly enhanced device performance can be attributed to the higher hole mobility and charge extraction capability, as well as lower interface recombination probabilities generated by the hybrid HTL. Additionally, the versatility of the hybrid HTL to improve the performance of OSCs based on different nonfullerene acceptors is demonstrated. These results indicate the promising potential of Nb2 C MXene in the development of high-performance OSCs.

4.
Adv Sci (Weinh) ; 9(26): e2202150, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35848759

RESUMEN

Semitransparent organic solar cells (ST-OSCs) offer potentially more opportunities in areas of self-powered greenhouses and building-integrated photovoltaic systems. In this work, the effort to use a combination of solution-processable gold nanobipyramids (AuNBPs)-based hole transporting layer and a low/high dielectric constant double layer optical coupling layer (OCL) for improving the performance of ST-OSCs over the two competing indexes of power conversion efficiency (PCE) and average visible transmittance (AVT) is reported. The fabrication and characterization of the ST-OSCs are guided, at design and analyses level, using the theoretical simulation and experimental optimization. The use of a low/high dielectric constant double layer OCL helps enhancing the visible light transparency while reflecting the near-infrared (NIR) photons back into the photoactive layer for light harvesting. NIR absorption enhancement in the ST-OSCs is realized through the AuNBPs-induced localized surface plasmon resonance (LSPR). The weight ratio of the polymer donor to nonfullerene acceptor in the bulk heterojunction is adjusted to realize the maximum NIR absorption enhancement, enabled by the AuNBPs-induced LSPR, achieving the high-performance ST-OSCs with a high PCE of 13.15% and a high AVT of 25.9%.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA