Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Virol Sin ; 39(2): 301-308, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38452856

RESUMEN

Hand, foot, and mouth disease (HFMD) is a common pediatric illness mainly caused by enteroviruses, which are important human pathogens. Currently, there are no available antiviral agents for the therapy of enterovirus infection. In this study, an excellent high-content antiviral screening system utilizing the EV-A71-eGFP reporter virus was developed. Using this screening system, we screened a drug library containing 1042 natural compounds to identify potential EV-A71 inhibitors. Fangchinoline (FAN), a bis-benzylisoquinoline alkaloid, exhibits potential inhibitory effects against various enteroviruses that cause HFMD, such as EV-A71, CV-A10, CV-B3 and CV-A16. Further investigations revealed that FAN targets the early stage of the enterovirus life cycle. Through the selection of FAN-resistant EV-A71 viruses, we demonstrated that the VP1 protein could be a potential target of FAN, as two mutations in VP1 (E145G and V258I) resulted in viral resistance to FAN. Our research suggests that FAN is an efficient inhibitor of EV-A71 and has the potential to be a broad-spectrum antiviral drug against human enteroviruses.


Asunto(s)
Antivirales , Bencilisoquinolinas , Farmacorresistencia Viral , Antivirales/farmacología , Humanos , Bencilisoquinolinas/farmacología , Farmacorresistencia Viral/genética , Replicación Viral/efectos de los fármacos , Enterovirus Humano A/efectos de los fármacos , Enterovirus Humano A/genética , Evaluación Preclínica de Medicamentos , Genes Reporteros , Ensayos Analíticos de Alto Rendimiento , Proteínas de la Cápside/genética , Proteínas de la Cápside/antagonistas & inhibidores , Enterovirus/efectos de los fármacos , Enterovirus/genética , Línea Celular , Proteínas Fluorescentes Verdes/genética
3.
J Infect Dis ; 229(1): 43-53, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-37368353

RESUMEN

West Nile virus (WNV), an arthropod-borne flavivirus, can cause severe symptoms, including encephalitis, and death, posing a threat to public health and the economy. However, there is still no approved treatment or vaccine available for humans. Here, we developed a novel vaccine platform based on a classical insect-specific flavivirus (cISF) YN15-283-02, which was derived from Culicoides. The cISF-WNV chimera was constructed by replacing prME structural genes of the infectious YN15-283-02 cDNA clone with those of WNV and successfully rescued in Aedes albopictus cells. cISF-WNV was nonreplicable in vertebrate cells and nonpathogenic in type I interferon receptor (IFNAR)-deficient mice. A single-dose immunization of cISF-WNV elicited considerable Th1-biased antibody responses in C57BL/6 mice, which was sufficient to offer complete protection against lethal WNV challenge with no symptoms. Our studies demonstrated the potential of the insect-specific cISF-WNV as a prophylactic vaccine candidate to prevent infection with WNV.


Asunto(s)
Aedes , Flavivirus , Vacunas , Fiebre del Nilo Occidental , Virus del Nilo Occidental , Animales , Ratones , Humanos , Virus del Nilo Occidental/genética , Flavivirus/genética , Fiebre del Nilo Occidental/prevención & control , Anticuerpos Antivirales , Ratones Endogámicos C57BL
4.
Antiviral Res ; 220: 105757, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37984567

RESUMEN

Despite global vaccination efforts, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve and spread globally. Currently, the development of affordable vaccine against Omicron variant of concern (VOC) is necessary. Here, we assessed the safety and immunogenicity of a SARS-CoV-2 vaccine consisting of a live Newcastle disease virus vector expressing the spike (S) protein of Omicron BA.1 administrated intranasally (IN) or intramuscularly (IM) in Golden Syrian hamster model. Immunogenicity studies showed that the prime-boost regimen elicited high antibody titers and the modified S antigen (Sm-F) could induce robust antibody response in low dosage immunization through IN route. Sera of the immunized hamsters provided effective cross-neutralizing activity against different Omicron variants, the prototype and delta strains of SARS-CoV-2. Moreover, the vaccine could provide complete immunoprotection in hamsters against the Omicron BA.1 challenge by either intranasal or intramuscular immunization. Overall, our study provides an alternative nasal vaccine against the SARS-CoV-2 Omicron variants.


Asunto(s)
Antígenos de Grupos Sanguíneos , COVID-19 , Vacunas , Animales , Cricetinae , Humanos , Virus de la Enfermedad de Newcastle/genética , SARS-CoV-2 , Vacunas contra la COVID-19 , COVID-19/prevención & control , Vacunación , Inmunización , Mesocricetus , Glicoproteína de la Espiga del Coronavirus/genética , Anticuerpos Neutralizantes , Anticuerpos Antivirales
5.
Nat Commun ; 14(1): 5433, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37669968

RESUMEN

The quantum Hall effect, fundamental in modern condensed matter physics, continuously inspires new theories and predicts emergent phases of matter. Here we experimentally demonstrate three types of Chern insulators with synthetic dimensions on a programable 30-qubit-ladder superconducting processor. We directly measure the band structures of the 2D Chern insulator along synthetic dimensions with various configurations of Aubry-André-Harper chains and observe dynamical localisation of edge excitations. With these two signatures of topology, our experiments implement the bulk-edge correspondence in the synthetic 2D Chern insulator. Moreover, we simulate two different bilayer Chern insulators on the ladder-type superconducting processor. With the same and opposite periodically modulated on-site potentials for two coupled chains, we simulate topologically nontrivial edge states with zero Hall conductivity and a Chern insulator with higher Chern numbers, respectively. Our work shows the potential of using superconducting qubits for investigating different intriguing topological phases of quantum matter.

6.
Phys Rev Lett ; 131(8): 080401, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37683167

RESUMEN

Quantum simulation of different exotic topological phases of quantum matter on a noisy intermediate-scale quantum (NISQ) processor is attracting growing interest. Here, we develop a one-dimensional 43-qubit superconducting quantum processor, named Chuang-tzu, to simulate and characterize emergent topological states. By engineering diagonal Aubry-André-Harper (AAH) models, we experimentally demonstrate the Hofstadter butterfly energy spectrum. Using Floquet engineering, we verify the existence of the topological zero modes in the commensurate off-diagonal AAH models, which have never been experimentally realized before. Remarkably, the qubit number over 40 in our quantum processor is large enough to capture the substantial topological features of a quantum system from its complex band structure, including Dirac points, the energy gap's closing, the difference between even and odd number of sites, and the distinction between edge and bulk states. Our results establish a versatile hybrid quantum simulation approach to exploring quantum topological systems in the NISQ era.

7.
Virol Sin ; 38(4): 585-594, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37390870

RESUMEN

Alphaviruses, which contain a variety of mosquito-borne pathogens, are important pathogens of emerging/re-emerging infectious diseases and potential biological weapons. Currently, no specific antiviral drugs are available for the treatment of alphaviruses infection. For most highly pathogenic alphaviruses are classified as risk group-3 agents, the requirement of biosafety level 3 (BSL-3) facilities limits the live virus-based antiviral study. To facilitate the antiviral development of alphaviruses, we developed a high throughput screening (HTS) platform based on a recombinant Semliki Forest virus (SFV) which can be manipulated in BSL-2 laboratory. Using the reverse genetics approach, the recombinant SFV and SFV reporter virus expressing eGFP (SFV-eGFP) were successfully rescued. The SFV-eGFP reporter virus exhibited robust eGFP expression and remained relatively stable after four passages in BHK-21 â€‹cells. Using a broad-spectrum alphavirus inhibitor ribavirin, we demonstrated that the SFV-eGFP can be used as an effective tool for antiviral study. The SFV-eGFP reporter virus-based HTS assay in a 96-well format was then established and optimized with a robust Z' score. A section of reference compounds that inhibit highly pathogenic alphaviruses were used to validate that the SFV-eGFP reporter virus-based HTS assay enables rapid screening of potent broad-spectrum inhibitors of alphaviruses. This assay provides a safe and convenient platform for antiviral study of alphaviruses.


Asunto(s)
Alphavirus , Animales , Alphavirus/genética , Virus de los Bosques Semliki/genética , Virus de los Bosques Semliki/metabolismo , Antivirales/farmacología , Antivirales/metabolismo , Genes Reporteros , Ensayos Analíticos de Alto Rendimiento , Línea Celular , Replicación Viral
8.
Virol Sin ; 38(3): 470-479, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37127212

RESUMEN

COVID-19 has become a global public health crisis since its outbreak in China in December 2019. Currently there are few clinically effective drugs to combat SARS-CoV-2 infection. The main protein (Mpro), papain-like protease (PLpro) and RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 are involved in the viral replication, and might be prospective targets for anti-coronavirus drug development. Here, we investigated the antiviral activity of oridonin, a natural small-molecule compound, against SARS-CoV-2 infection in vitro. The time-of-addition analysis showed that oridonin efficiently inhibited SARS-CoV-2 infection by interfering with the genome replication at the post-entry stage. Mechanistically, the inhibition of viral replication by oridonin depends on the oxidation activity of α, ß-unsaturated carbonyl. Further experiments showed that oridonin not only effectively inhibited SARS-CoV-2 Mpro activity, but also had some inhibitory effects on PLpro-mediated deubiquitinating and viral polymerase-catalyzed RNA elongation activities at high concentrations. In particular, oridonin could inhibit the bat SARS-like CoV and the newly emerged SARS-CoV-2 omicron variants (BA.1 and BA.2), which highlights its potential as a pan-coronavirus antiviral agent. Overall, our data provide strong evidence that oridonin is an efficient antiviral agent against SARS-CoV-2 infection.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Péptido Hidrolasas/farmacología , Antivirales/farmacología , Antivirales/uso terapéutico , Inhibidores de Proteasas/farmacología
10.
Antiviral Res ; 211: 105549, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36690159

RESUMEN

With the explosive emergence of Zika virus (ZIKV) and the consequent devastating fetal malformations in infected expectant women, a safe and effective vaccine is urgently needed. Here, using our established NS1 trans-complementation system, we generated high titer of replication-defective ZIKV with NS1 deletion (ZIKV-ΔNS1) in the BHK-21 cell line stably expressing NS1 (BHKNS1). NS1 deletion of ZIKV-ΔNS1 was stably maintained as no replicative virus was found in naïve BHK-21 cells after continuous passaging of ZIKV-ΔNS1 in BHKNS1 cells. The safety of ZIKV-ΔNS1 was demonstrated when a high dose of ZIKV-ΔNS1 (107 IU) was used to infect the highly susceptible type I and type II interferon (IFN) receptor-deficient mice. ZIKV-ΔNS1 could induce antibody responses in both immunocompetent (BALB/c) and immunodeficient mice and a single dose of ZIKV-ΔNS1 vaccine protected the immunodeficient mice from a highly lethal dosage of challenge with WT ZIKV. ZIKV-ΔNS1 immunization also attenuated vertical transmission during pregnancy of type I IFN receptor-deficient IFNAR-/- mice and protected fetuses from ZIKV infection. Our data reported here not only provide a promising ZIKV vaccine candidate with a satisfied balance between safety and efficacy, but also demonstrate the potential of the NS1 trans-complementation system as a platform for flavivirus vaccine development, especially for highly pathogenic flaviviruses.


Asunto(s)
Vacunas Virales , Infección por el Virus Zika , Virus Zika , Embarazo , Femenino , Animales , Ratones , Anticuerpos Antivirales , Replicación Viral
11.
Methods Mol Biol ; 2585: 15-21, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36331761

RESUMEN

Immunostained plaque assay based on the specific antibody binding to viral antigen enables the detection and titration of virus infectivity, especially for viruses that could not form plaques using the classical crystal violet or neutral red staining methods. Here we describe the application of this method to quantify viral titers of wild-type West Nile virus (WNV-WT) and replication-defective WNV-ΔNS1 virus.


Asunto(s)
Fiebre del Nilo Occidental , Virus del Nilo Occidental , Humanos , Carga Viral , Replicación Viral , Pruebas Serológicas , Anticuerpos Antivirales , Ensayo de Placa Viral
12.
Biomed Pharmacother ; 158: 114094, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36502755

RESUMEN

As an emerging tumor therapy, ideal oncolytic viruses preferentially replicate in malignant cells, reverse the immunosuppressive tumor microenvironment, and eventually can be eliminated by the patient. It is of great significance for cancer treatment to discover new excellent oncolytic viruses. Here, we found that WNV live attenuated vaccine WNV-poly(A) could be developed as a novel ideal oncolytic agent against several types of cancers. Mechanistically, due to its high sensitivity to type Ι interferon (IFN-Ι), WNV-poly(A) could specifically kill tumor cells rather than normal cells. At the same time, WNV-poly(A) could activate Dendritic cells (DCs) and trigger tumor antigen specific response mediated by CD8 + T cell, which contributed to inhibit the propagation of original and distal tumor cells. Like intratumoral injection, intravenous injection with WNV-poly(A) also markedly delays Huh7 hepatic carcinoma (HCC) transplanted tumor progression. Most importantly, in addition to an array of mouse xenograft tumor models, WNV-poly(A) also has a significant inhibitory effect on many different types of patient-derived tumor tissues and HCC patient-derived xenograft (PDX) tumor models. Our studies reveal that WNV-poly(A) is a potent and excellent oncolytic agent against many types of tumors and may have a role in metastatic and recurrent tumors.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Virus Oncolíticos , Animales , Ratones , Linfocitos T CD8-positivos , Línea Celular Tumoral , Inmunidad , Neoplasias Hepáticas/terapia , Recurrencia Local de Neoplasia , Virus Oncolíticos/metabolismo , Microambiente Tumoral , Replicación Viral
14.
PLoS Negl Trop Dis ; 16(4): e0010363, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35468133

RESUMEN

COVID-19 caused by SARS-CoV-2 has posed a significant threat to global public health since its outbreak in late 2019. Although there are a few drugs approved for clinical treatment to combat SARS-CoV-2 infection currently, the severity of the ongoing global pandemic still urges the efforts to discover new antiviral compounds. As the viral spike (S) protein plays a key role in mediating virus entry, it becomes a potential target for the design of antiviral drugs against COVID-19. Here, we tested the antiviral activity of berbamine hydrochloride, a bis-benzylisoquinoline alkaloid, against SARS-CoV-2 infection. We found that berbamine hydrochloride could efficiently inhibit SARS-CoV-2 infection in different cell lines. Further experiments showed berbamine hydrochloride inhibits SARS-CoV-2 infection by targeting the viral entry into host cells. Moreover, berbamine hydrochloride and other bis-benzylisoquinoline alkaloids could potently inhibit S-mediated cell-cell fusion. Furthermore, molecular docking results implied that the berbamine hydrochloride could bind to the post fusion core of SARS-CoV-2 S2 subunit. Therefore, berbamine hydrochloride may represent a potential efficient antiviral agent against SARS-CoV-2 infection.


Asunto(s)
Bencilisoquinolinas , Tratamiento Farmacológico de COVID-19 , Antivirales/farmacología , Bencilisoquinolinas/farmacología , Humanos , Fusión de Membrana , Simulación del Acoplamiento Molecular , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Internalización del Virus
15.
J Virol ; 96(6): e0148021, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35107379

RESUMEN

In our previous study, we found that a new type of Chikungunya virus particle with a complete capsid deletion (ΔC-CHIKV) is still infectious in BHK-21 cells and demonstrated its potential as a live attenuated vaccine candidate. However, the low yield as well as the disability to propagate in vaccine production cell line Vero of ΔC-CHIKV are not practical for commercial vaccine development. In this study, we not only achieved the successful propagation of the viral particle in Vero cells, but significantly improved its yield through construction of a chimeric VEEV-ΔC-CHIKV and extensive passage in Vero cells. Mechanistically, high production of VEEV-ΔC-CHIKV is due to the improvement of viral RNA packaging efficiency conferred by adaptive mutations, especially those in envelope proteins. Similar to ΔC-CHIKV, the passaged VEEV-ΔC-CHIKV is safe, immunogenic, and efficacious, which protects mice from CHIKV challenge after only one shot of immunization. Our study demonstrates that the utilization of infectious capsidless viral particle of CHIKV as a vaccine candidate is a practical strategy for the development of alphavirus vaccine. IMPORTANCE Chikungunya virus (CHIKV) is one of important emerging alphaviruses. Currently, there are no licensed vaccines against CHIKV infection. We have previously found a new type of Chikungunya virus particle with a complete capsid deletion (ΔC-CHIKV) as a live attenuated vaccine candidate that is not suitable for commercial vaccine development with the low viral titer production. In this study, we significantly improved its production through construction of a chimeric VEEV-ΔC-CHIKV. Our results proved the utilization of infectious capsidless viral particle of CHIKV as a safe and practical vaccine candidate.


Asunto(s)
Fiebre Chikungunya , Virus Chikungunya , Vacunas Virales , Cultivo de Virus , Animales , Proteínas de la Cápside/genética , Fiebre Chikungunya/prevención & control , Virus Chikungunya/genética , Chlorocebus aethiops , Ratones , Desarrollo de Vacunas , Vacunas Atenuadas/genética , Células Vero , Vacunas Virales/genética , Cultivo de Virus/métodos
16.
J Anim Sci Technol ; 64(1): 183-186, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35174352

RESUMEN

Lactiplantibacillus plantarum (L. plantarum) ST was isolated from De'ang pickled tea in Yunnan Province, China. The genomes of strain ST were fully sequenced and analyzed using the PacBio RS II sequencing system. Our previous study has shown that L. plantarum ST is a potential probiotic strain. It had strong tolerance in the simulated artificial gastrointestinal tract, and in the antagonism tests, this strain showed strong antibacterial activity. Therefore, as a probiotic, it may be used in animal breeding. L. plantarum ST genome was composed of 1 circular chromosome and 7 plasmids. The length of the whole genome was 3320817 bp, and the annular chromosome size was 3058984 bp, guanine + cytosine (G ± C) content (%) was 44.76%, which contained 2945 protein-coding sequences (CDS). This study will contribute to a further comprehensive understanding of L. Plantarum ST at the genomic level and provide a theoretical basis for its future application in animal breeding.

18.
Emerg Microbes Infect ; 11(1): 465-476, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35034586

RESUMEN

The extremely high transmission rate of SARS-CoV-2 and severe cases of COVID-19 pose the two critical challenges in the battle against COVID-19. Increasing evidence has shown that the viral spike (S) protein-driven syncytia may be responsible for these two events. Intensive attention has thus been devoted to seeking S-guided syncytium inhibitors. However, the current screening campaigns mainly rely on either live virus-based or plasmid-based method, which are always greatly limited by the shortage of high-level biosafety BSL-3 facilities or too much labour-intensive work. Here, we constructed a new hybrid VEEV-SARS-CoV-2-S-eGFP reporter vector through replacement of the structural genes of Venezuelan equine encephalitis virus (VEEV) with the S protein of SARS-CoV-2 as the single structural protein. VEEV-SARS-CoV-2-S-eGFP can propagate steadily through cell-to-cell transmission pathway in S- and ACE2-dependent manner, forming GFP positive syncytia. In addition, a significant dose-dependent decay in GFP signals was observed in VEEV-SARS-CoV-2-S-eGFP replicating cells upon treatment with SARS-CoV-2 antiserum or entry inhibitors, providing further evidence that VEEV-SARS-CoV-2-S-eGFP system is highly sensitive to characterize the anti-syncytium-formation activity of antiviral agents. More importantly, the assay is able to be performed in a BSL-2 laboratory without manipulation of live SARS-CoV-2. Taken together, our work establishes a more convenient and efficient VEEV-SARS-CoV-2-S-eGFP replicating cells-based method for rapid screening of inhibitors blocking syncytium formation.


Asunto(s)
Antivirales , Células Gigantes , SARS-CoV-2 , Internalización del Virus/efectos de los fármacos , Antivirales/farmacología , Replicón , SARS-CoV-2/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/genética
19.
Emerg Microbes Infect ; 11(1): 123-135, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34877923

RESUMEN

Japanese encephalitis virus (JEV), an important neurotropic pathogen, belongs to the genus Flavivirus of the family Flaviviridae and has caused huge threat to public health. It is still obscure regarding the functions of stem-loop (SL) and dumbbell (DB) domains of JEV 3' UTR in viral replication and virulence. In the current study, using the infectious clone of JEV SA14 strain as a backbone, we constructed a series of deletion mutants of 3' UTR to investigate their effects on virus replication. The results showed that partial deletions within SL or DB domain had no apparent effects on virus replication in both mammalian (BHK-21) and mosquito (C6/36) cells, suggesting that they were not involved in viral host-specific replication. However, the entire SL domain deletion (ΔVR) significantly reduced virus replication in both cell lines, indicating the important role of the complete SL domain in virus replication. The revertant of ΔVR mutant virus was obtained by serial passage in BHK-21 cells that acquired a duplication of DB domain (DB-dup) in the 3' UTR, which greatly restored virus replication as well as the capability to produce the subgenomic flavivirus RNAs (sfRNAs). Interestingly, the DB-dup mutant virus was highly attenuated in C57BL/6 mice despite replicating similar to WT JEV. These findings demonstrate the significant roles of the duplicated structures in 3' UTR in JEV replication and provide a novel strategy for the design of live-attenuated vaccines.


Asunto(s)
Regiones no Traducidas 3' , Virus de la Encefalitis Japonesa (Especie)/genética , Virus de la Encefalitis Japonesa (Especie)/fisiología , Encefalitis Japonesa/virología , Replicación Viral/genética , Animales , Línea Celular , Virus de la Encefalitis Japonesa (Especie)/patogenicidad , Ratones , Ratones Endogámicos C57BL , Mutación , Conformación de Ácido Nucleico , ARN Viral/química , ARN Viral/genética , Virulencia/genética
20.
Signal Transduct Target Ther ; 6(1): 369, 2021 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-34697295

RESUMEN

The lung is the prophylaxis target against SARS-CoV-2 infection, and neutralizing antibodies are a leading class of biological products against various infectious viral pathogen. In this study, we develop a safe and cost-effective platform to express neutralizing antibody in the lung with replicating mRNA basing on alphavirus replicon particle (VRP) delivery system, to prevent SARS-CoV-2 infections. First, a modified VEEV replicon with two subgenomic (sg) promoters was engineered to translate the light and heavy chains of antibody simultaneously, for expression and assembly of neutralizing anti-SARS-CoV-2 antibody CB6. Second, the feasibility and protective efficacy of replicating mRNA against SARS-CoV-2 infection were demonstrated through both in vitro and in vivo assays. The lung target delivery with the help of VRP system resulted in efficiently block SARS-CoV-2 infection with reducing viral titer and less tissue damage in the lung of mice. Overall, our data suggests that expressing neutralizing antibodies in the lungs with the help of self-replicating mRNA could potentially be a promising prophylaxis approach against SARS-CoV-2 infection.


Asunto(s)
Alphavirus , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/terapia , Replicón , SARS-CoV-2/metabolismo , Animales , Anticuerpos Neutralizantes/biosíntesis , Anticuerpos Neutralizantes/genética , Anticuerpos Antivirales/biosíntesis , Anticuerpos Antivirales/genética , COVID-19/genética , COVID-19/metabolismo , Chlorocebus aethiops , Cricetinae , Femenino , Ratones , Ratones Endogámicos BALB C , ARN Mensajero/genética , ARN Mensajero/metabolismo , SARS-CoV-2/genética , Células Vero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...