Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int Immunopharmacol ; 128: 111532, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38237226

RESUMEN

Following hypoxic-ischemic brain damage (HIBD), there is a decline in cognitive function; however, there are no effective treatment strategies for this condition in neonates. This study aimed to evaluate the role of the cluster of differentiation 200 (CD200)/CD200R1 axis in cognitive function following HIBD using an established model of HIBD in postnatal day 7 rats. Western blotting analysis was conducted to evaluate the protein expression levels of CD200, CD200R1, proteins associated with the PI3K/Akt-NF-κB pathway, and inflammatory factors such as TNF-α, IL-1ß, and IL-6 in the hippocampus. Additionally, double-immunofluorescence labeling was utilized to evaluate M1 microglial polarization and neurogenesis in the hippocampus. To assess the learning and memory function of the experimental rats, the Morris water maze (MWM) test was conducted. HIBDleads to a decrease in the expression of CD200 and CD200R1 proteins in the neonatal rat hippocampus, while simultaneously increasing the expression of TNF-α, IL-6, and IL-1ß proteins, ultimately resulting in cognitive impairment. The administration of CD200Fc, a fusion protein of CD200, was found to enhance the expression of p-PI3K and p-Akt, but reduce the expression of p-NF-κB. Additionally, CD200Fc inhibited M1 polarization of microglia, reduced neuroinflammation, improved hippocampal neurogenesis, and mitigated cognitive impairment caused by HIBD in neonatal rats. In contrast, blocking the interaction between CD200 and CD200R1 with the anti-CD200R1 antibody (CD200R1 Ab) exerted the opposite effect. Furthermore, the PI3K specific activator, 740Y-P, significantly increased the expression of p-PI3K and p-Akt, but reduced p-NF-κB expression. It also inhibited M1 polarization of microglia, reduced neuroinflammation, and improved hippocampal neurogenesis and cognitive function in neonatal rats with HIBD. Our findings illustrate that activation of the CD200/CD200R1 axis inhibits the NF-κB-mediated M1 polarization of microglia to improve HIBD-induced cognitive impairment and hippocampal neurogenesis disorder via the PI3K/Akt signaling pathway.


Asunto(s)
Disfunción Cognitiva , Microglía , Fragmentos de Péptidos , Receptores del Factor de Crecimiento Derivado de Plaquetas , Animales , Ratas , Animales Recién Nacidos , Disfunción Cognitiva/metabolismo , Hipocampo/metabolismo , Interleucina-6/metabolismo , Enfermedades Neuroinflamatorias , FN-kappa B/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
2.
CNS Neurosci Ther ; 30(1): e14486, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37830170

RESUMEN

AIMS: Dexmedetomidine (DEX) has been reported to alleviate hypoxic-ischemic brain damage (HIBD) in neonates. This study aimed to investigate whether DEX improves cognitive impairment by promoting hippocampal neurogenesis via the BDNF/TrkB/CREB signaling pathway in neonatal rats with HIBD. METHODS: HIBD was induced in postnatal day 7 rats using the Rice-Vannucci method, and DEX (25 µg/kg) was administered intraperitoneally immediately after the HIBD induction. The BDNF/TrkB/CREB pathway was regulated by administering the TrkB receptor antagonist ANA-12 through intraperitoneal injection or by delivering adeno-associated virus (AAV)-shRNA-BDNF via intrahippocampal injection. Western blot was performed to measure the levels of BDNF, TrkB, and CREB. Immunofluorescence staining was utilized to identify the polarization of astrocytes and evaluate the levels of neurogenesis in the dentate gyrus of the hippocampus. Nissl and TTC staining were performed to evaluate the extent of neuronal damage. The MWM test was conducted to evaluate spatial learning and memory ability. RESULTS: The levels of BDNF and neurogenesis exhibited a notable decrease in the hippocampus of neonatal rats after HIBD, as determined by RNA-sequencing technology. Our results demonstrated that treatment with DEX effectively increased the protein expression of BDNF and the phosphorylation of TrkB and CREB, promoting neurogenesis in the dentate gyrus of the hippocampus in neonatal rats with HIBD. Specifically, DEX treatment significantly augmented the expression of BDNF in hippocampal astrocytes, while decreasing the proportion of detrimental A1 astrocytes and increasing the proportion of beneficial A2 astrocytes in neonatal rats with HIBD. Furthermore, inhibiting the BDNF/TrkB/CREB pathway using either ANA-12 or AAV-shRNA-BDNF significantly counteracted the advantageous outcomes of DEX on hippocampal neurogenesis, neuronal survival, and cognitive improvement. CONCLUSIONS: DEX promoted neurogenesis in the hippocampus by activating the BDNF/TrkB/CREB pathway through the induction of polarization of A1 astrocytes toward A2 astrocytes, subsequently mitigating neuronal damage and cognitive impairment in neonates with HIBD.


Asunto(s)
Disfunción Cognitiva , Dexmedetomidina , Hipoxia-Isquemia Encefálica , Ratas , Animales , Animales Recién Nacidos , Ratas Sprague-Dawley , Dexmedetomidina/farmacología , Dexmedetomidina/uso terapéutico , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Hipocampo/metabolismo , Transducción de Señal , Hipoxia-Isquemia Encefálica/tratamiento farmacológico , Hipoxia-Isquemia Encefálica/metabolismo , ARN Interferente Pequeño/farmacología , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo , Neurogénesis
3.
Cell Death Dis ; 14(12): 820, 2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-38092760

RESUMEN

Hypoxic-ischemic brain damage (HIBD) can result in significant global rates of neonatal death or permanent neurological disability. N6-methyladenosine (m6A) modification of RNA influences fundamental aspects of RNA metabolism, and m6A dysregulation is implicated in various neurological diseases. However, the biological roles and clinical significance of m6A in HIBD remain unclear. We currently evaluated the effect of HIBD on cerebral m6A methylation in RNAs in neonatal rats. The m6A dot blot assay showed a global augmentation in RNA m6A methylation post-HI. Herein, we also report on demethylase FTO, which is markedly downregulated in the hippocampus and is the main factor involved with aberrant m6A modification following HI. By conducting a comprehensive analysis of RNA-seq data and m6A microarray results, we found that transcripts with m6A modifications were more highly expressed overall than transcripts without m6A modifications. The overexpression of FTO resulted in the promotion of Akt/mTOR pathway hyperactivation, while simultaneously inhibiting autophagic function. This is carried out by the demethylation activity of FTO, which selectively demethylates transcripts of phosphatase and tensin homolog (PTEN), thus promoting its degradation and reduced protein expression after HI. Moreover, the synaptic and neurocognitive disorders induced by HI were effectively reversed through the overexpression of FTO in the hippocampus. Cumulatively, these findings demonstrate the functional importance of FTO-dependent hippocampal m6A methylome in cognitive function and provides novel mechanistic insights into the therapeutic potentials of FTO in neonatal HIBD.


Asunto(s)
Disfunción Cognitiva , ARN , Animales , Ratas , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Animales Recién Nacidos , Disfunción Cognitiva/genética , ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
4.
Inflamm Res ; 72(12): 2127-2144, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37902837

RESUMEN

BACKGROUND: Postoperative cognitive dysfunction (POCD) is a neurological complication occurring after anesthesia and surgery. Neuroinflammation plays a critical role in the pathogenesis of POCD, and the activation of the cluster of differentiation 200 (CD200)/CD200R1 axis improves neurological recovery in various neurological disorders by modulating inflammation. The aim of this study was to investigate the impact and underlying mechanism of CD200/CD200R1 axis on POCD in aged mice. METHODS: The model of POCD was established in aged mice. To assess the learning and memory abilities of model mice, the Morris water maze test was implemented. CD200Fc (CD200 fusion protein), CD200R1 Ab (anti-CD200R1 antibody), and 740Y-P (a specific PI3K activator) were used to evaluate the effects of the CD200/CD200R1/PI3K/Akt/NF-κB signaling pathway on hippocampal microglial polarization, neuroinflammation, synaptic activity, and cognition in mice. RESULTS: It was observed that anesthesia/surgery induced cognitive decline in aged mice, increased the levels of tumor necrosis factor alpha (TNF-α), interleukin (IL)-6, IL-1 ß and decreased the levels of postsynaptic density protein 95 (PSD-95), synaptophysin (SYN) in the hippocampus. Moreover, CD200Fc and 740Y-P attenuated neuroinflammation and synaptic deficits and reversed cognitive impairment via the phosphatidylinositol 3-kinase (PI3K)/ protein kinase B (Akt)/nuclear factor-kappa B (NF-κB) signaling pathway, whereas CD200R1 Ab administration exerted the opposite effects. Our results further show that the CD200/CD200R1 axis modulates M1/M2 polarization in hippocampal microglia via the PI3K/Akt/NF-κB signaling pathway. CONCLUSIONS: Our findings indicate that the activation of the CD200/CD200R1 axis reduces neuroinflammation, synaptic deficits, and cognitive impairment in the hippocampus of aged mice by regulating microglial M1/M2 polarization via the PI3K/Akt/NF-κB signaling pathway.


Asunto(s)
FN-kappa B , Complicaciones Cognitivas Postoperatorias , Animales , Ratones , Interleucina-6/metabolismo , Microglía/metabolismo , Enfermedades Neuroinflamatorias , FN-kappa B/metabolismo , Fosfatidilinositol 3-Quinasa , Fosfatidilinositol 3-Quinasas/metabolismo , Complicaciones Cognitivas Postoperatorias/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal
5.
Antioxidants (Basel) ; 11(11)2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36358571

RESUMEN

Hypoxic-ischemic brain injury is an important cause of neonatal neurological deficits. Our previous study demonstrated that dexmedetomidine (Dex) provided neuroprotection against neonatal hypoxic brain injury; however, the underlying mechanisms remain incompletely elucidated. Overactivation of NADPH oxidase 2 (NOX2) can cause neuronal apoptosis and neurological deficits. Hence, we aimed to investigate the role of neuronal NOX2 in Dex-mediated neuroprotection and to explore its potential mechanisms. Hypoxic injury was modeled in neonatal rodents in vivo and in cultured hippocampal neurons in vitro. Our results showed that pre- or post-treatment with Dex improved the neurological deficits and alleviated the hippocampal neuronal damage and apoptosis caused by neonatal hypoxia. In addition, Dex treatment significantly suppressed hypoxia-induced neuronal NOX2 activation; it also reduced oxidative stress, as evidenced by decreases in intracellular reactive oxygen species (ROS) production, malondialdehyde, and 8-hydroxy-2-deoxyguanosine, as well as increases in the antioxidant enzymatic activity of superoxide dismutase and glutathione peroxidase in neonatal rat hippocampi and in hippocampal neurons. Lastly, the posthypoxicneuroprotective action of Dex was almost completely abolished in NOX2-deficient neonatal mice and NOX2-knockdown neurons. In conclusion, our data demonstrated that neuronal NOX2-mediated oxidative stress is involved in the neuroprotection that Dex provides against apoptosis and neurological deficits in neonates following hypoxia.

6.
Front Pediatr ; 10: 986452, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36299701

RESUMEN

Hypoxic-ischemic brain damage (HIBD) is the main cause of perinatal mortality and neurologic complications in neonates, but it remains difficult to cure due to scarce treatments and complex molecular mechanisms remaining incompletely explained. Recent, mounting evidence shows that endogenous neurogenesis can improve neonatal neurological dysfunction post-HIBD. However, the capacity for spontaneous endogenous neurogenesis is limited and insufficient for replacing neurons lost to brain damage. Therefore, it is of great clinical value and social significance to seek therapeutic techniques that promote endogenous neurogenesis, to reduce neonatal neurological dysfunction from HIBD. This review summarizes the known neuroprotective effects of, and treatments targeting, endogenous neurogenesis following neonatal HIBD, to provide available targets and directions and a theoretical basis for the treatment of neonatal neurological dysfunction from HIBD.

7.
Front Neurol ; 13: 995747, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36158961

RESUMEN

N6-methyladenosine (m6A), the most prevalent post-transcriptional RNA modification throughout the eukaryotic transcriptome, participates in diverse biophysiological processes including cell fates, embryonic development and stress responses. Accumulating evidence suggests that m6A modification in neural development and differentiation are highly regulated processes. As RNA m6A is crucial to protein translation and various bioprocesses, its modification dysregulation may also be associated with brain injury. This review highlights the biological significance of m6A modification in neurodegenerative disease and brain injury, including cerebrovascular disorders, is highlighted. Emphasis is placed on recent findings that elucidate the relevant molecular functional mechanism of m6A modification after brain injury and neurodegenerative disease. Finally, a neurobiological basis for further investigation of potential treatments is described.

8.
Front Pharmacol ; 13: 983920, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36059991

RESUMEN

Background: Hypoxic-ischemic brain damage (HIBD) is the main cause of neurological dysfunction in neonates. Olfactory cognitive function is important for feeding, the ability to detect hazardous situations and social relationships. However, only a few studies have investigated olfactory cognitive dysfunction in neonates with HIBD; furthermore, the specific mechanisms involved are yet to be elucidated. It has been reported that neurogenesis in the subventricular zone (SVZ) is linked to olfactory cognitive function. Recently, dexmedetomidine (DEX) has been shown to provide neuroprotection in neonates following HIBD. In the present study, we investigated whether DEX could improve olfactory cognitive dysfunction in neonatal rats following HIBD and attempted to determine the underlying mechanisms. Methods: We induced HIBD in rats using the Rice-Vannucci model, and DEX (25 µg/kg, i.p.) was administered immediately after the induction of HIBD. Next, we used triphenyl tetrazolium chloride (TTC) staining and the Zea-longa score to assess the success of modelling. The levels of BDNF, TNF-α, IL-1ß and IL-6 were determined by western blotting. Immunofluorescence staining was used to detect microglial activation and microglial M1/M2 polarization as well as to evaluate the extent of neurogenesis in the SVZ. To evaluate the olfactory cognitive function, the rats in each group were raised until post-natal days 28-35; then, we performed the buried food test and the olfactory memory test. Results: Analysis showed that HIBD induced significant brain infarction, neurological deficits, and olfactory cognitive dysfunction. Furthermore, we found that DEX treatment significantly improved olfactory cognitive dysfunction in rat pups with HIBD. DEX treatment also increased the number of newly formed neuroblasts (BrdU/DCX) and neurons (BrdU/NeuN) in the SVZ by increasing the expression of BDNF in rat pups with HIBD. Furthermore, analysis showed that the neurogenic effects of DEX were possibly related to the inhibition of inflammation and the promotion of M1 to M2 conversion in the microglia. Conclusion: Based on the present findings, DEX treatment could improve olfactory cognitive dysfunction in neonatal rats with HIBD by promoting neurogenesis in the SVZ and enhancing the expression of BDNF in the microglia. It was possible associated that DEX inhibited neuroinflammation and promoted M1 to M2 conversion in the microglia.

9.
CNS Neurosci Ther ; 28(4): 540-553, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34784444

RESUMEN

INTRODUCTION: Perioperative neurocognitive disorders (PND) are common neurological complications after surgery. Diabetes mellitus (DM) has been reported to be an independent risk factor for PND, but little is known about its mechanism of action. Mammalian target of rapamycin (mTOR) signaling is crucial for neuronal growth, development, apoptosis, and autophagy, but the dysregulation of mTOR signaling leads to neurological disorders. The present study investigated whether rapamycin can attenuate PND by inhibiting mTOR and activating autophagy in diabetic rats. METHODS: Male diabetic Sprague-Dawley rats underwent tibial fracture surgery under isoflurane anesthesia to establish a PND model. Cognitive functions were examined using the Morris water maze test. The levels of phosphorylated mTOR (p-mTOR), phosphorylated tau (p-tau), autophagy-related proteins (Beclin-1, LC3), and apoptosis-related proteins (Bax, Bcl-2, cleaved caspase-3) in the hippocampus were examined on postoperative days 3, 7, and 14 by Western blot. Hippocampal amyloid ß (Aß) levels were examined by immunohistochemistry. RESULTS: The data showed that surgical trauma and/or DM impaired cognitive function, induced mTOR activation, and decreased Beclin-1 levels and the LC3-II/I ratio. The levels of Aß and p-tau and the hippocampal apoptotic responses were significantly higher in diabetic or surgery-treated rats than in control rats and were further increased in diabetic rats subjected to surgery. Pretreatment of rats with rapamycin inhibited mTOR hyperactivation and restored autophagic function, effectively decreasing tau hyperphosphorylation, Aß deposition, and apoptosis in the hippocampus. Furthermore, surgical trauma-induced neurocognitive disorders were also reversed by pretreatment of diabetic rats with rapamycin. CONCLUSION: The results demonstrate that mTOR hyperactivation regulates autophagy, playing a critical role in the mechanism underlying PND, and reveal that the modulation of mTOR signaling could be a promising therapeutic strategy for PND in patients with diabetes.


Asunto(s)
Autofagia , Diabetes Mellitus Experimental , Trastornos Neurocognitivos , Serina-Treonina Quinasas TOR , Péptidos beta-Amiloides/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Beclina-1/metabolismo , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/metabolismo , Hipocampo/metabolismo , Masculino , Trastornos Neurocognitivos/complicaciones , Trastornos Neurocognitivos/tratamiento farmacológico , Trastornos Neurocognitivos/metabolismo , Ratas , Ratas Sprague-Dawley , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/metabolismo
10.
J Biol Chem ; 296: 100095, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33208465

RESUMEN

DNA damage triggers the cellular adaptive response to arrest proliferation and repair DNA damage; when damage is too severe to be repaired, apoptosis is initiated to prevent the spread of genomic insults. However, how cells endure DNA damage to maintain cell function remains largely unexplored. By using Caenorhabditis elegans as a model, we report that DNA damage elicits cell maintenance programs, including the unfolded protein response of the endoplasmic reticulum (UPRER). Mechanistically, sublethal DNA damage unexpectedly suppresses apoptotic genes in C. elegans, which in turn increases the activity of the inositol-requiring enzyme 1/X-box binding protein 1 (IRE-1/XBP-1) branch of the UPRER by elevating unsaturated phosphatidylcholine. In addition, UPRER activation requires silencing of the lipid regulator skinhead-1 (SKN-1). DNA damage suppresses SKN-1 activity to increase unsaturated phosphatidylcholine and activate UPRER. These findings reveal the UPRER activation as an organismal adaptive response that is important to maintain cell function during DNA damage.


Asunto(s)
Caenorhabditis elegans/metabolismo , Daño del ADN , Estrés del Retículo Endoplásmico , Fosfatidilcolinas/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Fosfatidilcolinas/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Respuesta de Proteína Desplegada/genética
11.
G3 (Bethesda) ; 10(5): 1707-1712, 2020 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-32161088

RESUMEN

The transcription factor SKN-1, the C. elegans ortholog of mammalian Nrf protein, is a well-known longevity factor, and its activation is observed in several long-lived models. SKN-1 also plays essential roles in xenobiotic and oxidative stress responses. Here, we report deleterious functions of SKN-1 in somatic stress resistance that may impair lifespan. Constitutive SKN-1 activation impairs animal resistance to several stresses, including heat, ER stress and mitochondrial stress, which result from the suppression of DAF-16, another master regulator of longevity. SKN-1 activation abrogates DAF-16 nuclear import and downregulates DAF-16 target genes under stress conditions, while SKN-1 inhibition promotes the expression of DAF-16 targets, even in long-lived mutants. Further, SKN-1 activation induces the expression of vitellogenin proteins, which are required for SKN-1-mediated suppression of DAF-16 and stress resistance. Together, these findings identify detrimental roles for SKN-1 activation in animal health, and more importantly, inspire the rethinking of the complex roles for SKN-1 in aging regulation.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción Forkhead/metabolismo , Longevidad/genética , Estrés Oxidativo , Interferencia de ARN , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
12.
PLoS Genet ; 15(4): e1008122, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-31034475

RESUMEN

Early exposure to some mild stresses can slow down the aging process and extend lifespan, raising the question of how early life stress might impact the somatic health of aged animals. Here, we reveal that early life heat experience triggers the establishment of epigenetic memory in soma, which promotes long-lasting stress responses and longevity in C. elegans. Unlike lethal heat shock, mild heat activates a unique transcriptional program mimicking pathogen defense responses, characterized by the enhanced expression of innate immune and detoxification genes. Surprisingly, the expression of defense response genes persists long after heat exposure, conferring enhanced stress resistance even in aged animals. Further studies identify the histone acetyltransferase CBP-1 and the chromatin remodeling SWI/SNF complex as epigenetic modulators of the long-lasting defense responses. Histone acetylation is elevated by heat stress and maintained into agedness thereafter. Accordingly, histone acetylation levels were increased on the promoters of defense genes. Moreover, disruption of epigenetic memory abrogates the longevity response to early hormetic heat stress, indicating that long-lasting defense responses are crucial for the survival of aged animals. Together, our findings provide mechanistic insights into how temperature stress experienced in early life provides animals with lifetime health benefits.


Asunto(s)
Respuesta al Choque Térmico , Histonas/metabolismo , Longevidad , Acetilación , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Epigénesis Genética , Calor , Inmunidad Innata , Fase I de la Desintoxicación Metabólica , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Regiones Promotoras Genéticas
13.
Chem Commun (Camb) ; 51(61): 12251-3, 2015 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-26133696

RESUMEN

Ultrathin graphitic carbon nitride nanosheets (g-C3N4) with a thickness of about 2 nm were synthesized by a one-step electrochemical method for the first time. The possible mechanism of the electrochemical synthesis was discussed. This as-synthesized g-C3N4 showed intrinsic peroxidase-like activity and was successfully applied for the detection of uric acid.


Asunto(s)
Técnicas Electroquímicas , Nanopartículas/química , Nitrilos/síntesis química , Ácido Úrico/análisis , Nitrilos/química
14.
Chem Commun (Camb) ; 51(33): 7164-7, 2015 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-25811290

RESUMEN

Hydroxyl-rich C-dots were used as both the reducing and stabilizing agent in the preparation of noble metal nanoparticles (AuNPs, AgNPs and Au@AgNPs) for the detection of glucose.

15.
Anal Chim Acta ; 866: 69-74, 2015 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-25732694

RESUMEN

We propose a simple, economical, and one-pot method to synthesize water-soluble functionalized fluorescent carbon dots (C-Dots) through electrochemical carbonization of sodium citrate and urea. The as-prepared C-Dots have good photostability and exhibit a high quantum yield of 11.9%. The sizes of the C-Dots are mainly distributed in the range of 1.0-3.5 nm with an average size of 2.4 nm. It has been further used as a novel label-free sensing probe for selective detection of Hg(2+) ions with detection limit as low as 3.3 nM. The detection linear range is 0.01-10 µM. The as-prepared C-Dots are also successfully applied for the determination of Hg(2+) in real water samples.


Asunto(s)
Carbono/química , Mercurio/análisis , Puntos Cuánticos/química , Espectrometría de Fluorescencia , Técnicas Electroquímicas , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/química , Agua Dulce/análisis , Iones/química , Límite de Detección
16.
Anal Chem ; 87(4): 2195-203, 2015 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-25594515

RESUMEN

Biological thiols play a critical role in biological processes and are involved in a variety of diseases. The discrimination detection of biological thiols is of increasing importance in clinical diagnosis. In this paper, a novel nanosensor was developed to discriminate cysteine (Cys) from homocysteine (Hcy) and glutathione (GSH) with multiple signals: colorimetric, photoluminescence (PL), and up-conversional photoluminescence (UCP). The nanosensor (NC-dots/AuNPs) was constructed by nitrogen-doped carbon dots (NC-dots) and gold nanoparticles (AuNPs) through assembling NC-dots "shell" on AuNPs and showed the obvious different response to Cys, Hcy, and GSH with colorimetric, PL, and UCP signals. The discrimination effect for Cys is originated from conformations and interaction difference of the thiols groups in Cys and Hcy and/or GSH with AuNPs. Among them, only Cys can quickly penetrate into the NC-dots "shell" of the composite and induce the dispersing of the aggregated NC-dots/AuNPs, which lead to the color change from purple to red and the recovery of PL and UCP of NC-dots. This assay was successfully applied for the detection of Cys in human serum with the detection limit of 4 nM.


Asunto(s)
Carbono/química , Cisteína/análisis , Oro/química , Nanopartículas del Metal/química , Nanotecnología , Nitrógeno/química , Colorimetría , Humanos , Mediciones Luminiscentes
17.
Talanta ; 125: 372-7, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24840459

RESUMEN

In this work, label-free silicon quantum dots (SiQDs) were used as a novel fluorescence probe for the sensitive and selective detection of Cu(2+). The fluorescence of the SiQDs was effectively quenched by H2O2 from the reaction of ascorbic acid with O2, and hydroxyl radicals from Fenton reaction between H2O2 and Cu(+). The fluorescence intensity of SiQDs was quenched about 25% in 15 min after the addition of H2O2 (1mM). While the SiQDs was incubated with AA (1mM) and Cu(2+) (1 µM) under the same conditions, the fluorescence intensity of SiQDs decreased about 55%. Obviously, the recycling of Cu(2+) in the test system may lead to a dramatical decrease in the fluorescence of SiQDs. Under the optimized experimental conditions, the rate of fluorescence quenching of SiQDs was linearly dependent on the Cu(2+) concentration ranging from 25 to 600 nM with the limit of detection as low as 8 nM, which was much lower than that of existing methods. Moreover, the probe was successfully applied to the determination of Cu(2+) in different environmental water samples and human hair.


Asunto(s)
Cobre/química , Colorantes Fluorescentes/química , Puntos Cuánticos , Ácido Ascórbico/química , Técnicas Biosensibles , Cabello/química , Humanos , Peróxido de Hidrógeno/química , Concentración de Iones de Hidrógeno , Radical Hidroxilo , Iones , Hierro/química , Límite de Detección , Microscopía Electrónica de Transmisión , Reproducibilidad de los Resultados , Transducción de Señal , Espectrometría de Fluorescencia , Temperatura , Contaminantes Químicos del Agua/análisis
18.
Chemistry ; 20(17): 4993-9, 2014 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-24623706

RESUMEN

Carbon nanodots (C-dots) show great potential as an important material for biochemical sensing, energy conversion, photocatalysis, and optoelectronics because of their water solubility, chemical inertness, low toxicity, and photo- and electronic properties. Numerous methods have been proposed for the preparation of C-dots. However, complex procedures and strong acid treatments are often required, and the as-prepared C-dots tend to be of low quality, and in particular, have a low efficiency for photoluminescence. Herein, a facile and general strategy involving the electrochemical carbonization of low-molecular-weight alcohols is proposed. As precursors, the alcohols transited into carbon-containing particles after electrochemical carbonization under basic conditions. The resultant C-dots exhibit excellent excitation- and size-dependent fluorescence without the need for complicated purification and passivation procedures. The sizes of the as-prepared C-dots can be adjusted by varying the applied potential. High-quality C-dots are prepared successfully from different small molecular alcohols, suggesting that this research provides a new, highly universal method for the preparation of fluorescent C-dots. In addition, luminescence microscopy of the C-dots is demonstrated in human cancer cells. The results indicate that the as-prepared C-dots have low toxicity and can be used in imaging applications.

19.
Analyst ; 138(21): 6551-7, 2013 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-23982153

RESUMEN

High quality carbon dots (C-dots) with down- and up-conversion fluorescence have been synthesized through low-temperature carbonization using sweet pepper as the carbon source. The C-dots with a quantum yield (QY) of 19.3% exhibit superior photophysical properties, for example, narrow and symmetric emission spectra, large stock shifts, resistance to photobleaching, and excitation-dependent fluorescence behavior. The excellent C-dots serve as useful fluorescent probes for hypochlorite (ClO(-)) detection by both down- and up-conversion fluorescence. Two consecutive linear ranges allow a wide determination of ClO(-) concentrations with a low detection limit of 0.05 µmol L(-1) and 0.06 µmol L(-1) (S/N = 3) for down- and up-conversion fluorescence measurements, respectively. The proposed detection method is advantageous because it is simple, sensitive, dual-signalling model and low-cost and has potential extensive applications in environmental and biological assays.


Asunto(s)
Carbono/química , Colorantes Fluorescentes/química , Tecnología Química Verde/métodos , Ácido Hipocloroso/análisis , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Capsicum/química
20.
Biosens Bioelectron ; 48: 75-81, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-23651571

RESUMEN

A double signal amplification platform for ultrasensitive and simultaneous detection of ascorbic acid (AA), dopamine (DA), uric acid (UA) and acetaminophen (AC) was fabricated by a nanocomposite of ferrocene thiolate stabilized Fe3O4@Au nanoparticles with graphene sheet. The platform was constructed by coating a newly synthesized phenylethynyl ferrocene thiolate (Fc-SAc) modified Fe3O4@Au NPs coupling with graphene sheet/chitosan (GS-chitosan) on a glassy carbon electrode (GCE) surface. The Fe3O4@Au-S-Fc/GS-chitosan modified GCE exhibits a synergistic catalytic and amplification effect toward AA, DA, UA and AC oxidation. The oxidation peak currents of the four compounds on the electrode were linearly dependent on AA, DA, UA and AC concentrations in the ranges of 4-400 µM, 0.5-50 µM, 1-300 µM and 0.3-250 µM in the individual detection of each component, respectively. By simultaneously changing the concentrations of AA, DA, UA and AC, their electrochemical oxidation peaks appeared at -0.03, 0.15, 0.24 and 0.35 V, and good linear current responses were obtained in the concentration ranges of 6-350, 0.5-50, 1-90 and 0.4-32 µM with the detection limits of 1, 0.1, 0.2 and 0.05 µM (S/N=3), respectively.


Asunto(s)
Acetaminofén/análisis , Ácido Ascórbico/análisis , Dopamina/análisis , Ácido Úrico/análisis , Acetaminofén/sangre , Acetaminofén/orina , Ácido Ascórbico/sangre , Ácido Ascórbico/orina , Técnicas Biosensibles/métodos , Dopamina/sangre , Dopamina/orina , Técnicas Electroquímicas/métodos , Óxido Ferrosoférrico/química , Compuestos Ferrosos/química , Oro/química , Grafito/química , Humanos , Límite de Detección , Metalocenos , Nanocompuestos/química , Nanopartículas/química , Compuestos de Sulfhidrilo/química , Ácido Úrico/sangre , Ácido Úrico/orina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...