Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Neural Regen Res ; 13(6): 1019-1025, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29926829

RESUMEN

Synapses are key structures in neural networks, and are involved in learning and memory in the central nervous system. Investigating synaptogenesis and synaptic aging is important in understanding neural development and neural degeneration in diseases such as Alzheimer disease and Parkinson's disease. Our previous study found that synaptogenesis and synaptic maturation were harmonized with brain development and maturation. However, synaptic damage and loss in the aging cerebellum are not well understood. This study was designed to investigate the occurrence of synaptic aging in the cerebellum by observing the ultrastructural changes of dendritic spines and synapses in cerebellar Purkinje cells of aging mice. Immunocytochemistry, DiI diolistic assays, and transmission electron microscopy were used to visualize the morphological characteristics of synaptic buttons, dendritic spines and synapses of Purkinje cells in mice at various ages. With synaptic aging in the cerebellum, dendritic spines and synaptic buttons were lost, and the synaptic ultrastructure was altered, including a reduction in the number of synaptic vesicles and mitochondria in presynaptic termini and smaller thin specialized zones in pre- and post-synaptic membranes. These findings confirm that synaptic morphology and function is disrupted in aging synapses, which may be an important pathological cause of neurodegenerative diseases.

2.
Int J Mol Med ; 40(6): 1699-1708, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29039446

RESUMEN

Autophagy is a highly conserved process of self-digestion to promote cell survival in response to nutrient starvation and other metabolic stresses. However, whether ischemic-hypoxic (IH) injury-induced autophagy acts as a neuroprotective mechanism or leads to neuroinjury is a subject of debate. It is known that autophagy is regulated by signaling pathways, including the mammalian target of rapamycin pathway. However, in neural IH injury, whether other signaling pathways are involved in the regulation of autophagy remains to be fully elucidated. In the present study, using the autophagy agonist (rampycin), autophagy antagonist [3-methyl adenine (3-MA)] and lysosome antagonist (MHY1485), autophagy was intervened with at oxygen-glucose deprivation (OGD) 6 h, in order to elucidate the regulatory mechanisms of autophagy. Using immunocytochemistry and western blot analysis, the expression levels of stress-related proteins, such as hypoxia-inducible factor-1α (HIF-1α) (a key regulator in hypoxia) and cyclooxygenase 2 (COX2; inflammatory indicator), were analyzed. In addition, the upstream proteins (Wnt1 and Wnt3a), downstream proteins (Dvl2, ß-catenin) and target proteins (C-myc and cyclin D) in the Wnt/ß-catenin signaling pathway were examined by immunocytochemistry and western blot analysis. The present study revealed that autophagy was activated with the upregulation of autophagic flux in IH injury; it was demonstrated that autophagy had a protective role in IH injury. The Wnt/ß-catenin pathway was involved in IH injury regulation, and the upstream proteins in the Wnt/ß-catenin signaling pathway were upregulated, whereas downstream proteins were downregulated by the activity of autophagy accordingly.


Asunto(s)
Autofagia/fisiología , Hipoxia-Isquemia Encefálica/metabolismo , Vía de Señalización Wnt/fisiología , beta Catenina/metabolismo , Adenina/análogos & derivados , Adenina/farmacología , Animales , Autofagia/efectos de los fármacos , Modelos Biológicos , Morfolinas/farmacología , Células PC12 , Ratas , Sirolimus/farmacología , Triazinas/farmacología , Vía de Señalización Wnt/efectos de los fármacos
3.
Neural Regen Res ; 12(3): 440-446, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28469659

RESUMEN

Cold exposure is an external stress factor that causes skin frostbite as well as a variety of diseases. Estrogen might participate in neuroprotection after cold exposure, but its precise mechanism remains unclear. In this study, mice were exposed to 10°C for 7 days and 0-4°C for 30 days to induce a model of chronic cold exposure. Results showed that oxidative stress-related c-fos and cyclooxygenase 2 expressions, MAP1LC3-labeled autophagic cells, Iba1-labeled activated microglia, and interleukin-1ß-positive pyramidal cells were increased in the hippocampal CA1 area. Chronic cold exposure markedly elevated the levels of estrogen in the blood and the estrogen receptor, G protein-coupled receptor 30. These results indicate that neuroimmunoreactivity is involved in chronic cold exposure-induced pathological alterations, including oxidative stress, neuronal autophagy, and neuroimmunoreactivity. Moreover, estrogen exerts a neuroprotective effect on cold exposure.

4.
Neurochem Res ; 42(10): 2841-2849, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28508993

RESUMEN

Neuronal apoptosis mediated by the mitochondrial apoptosis pathway is an important pathological process in cerebral ischemia-reperfusion injury. 14,15-EET, an intermediate metabolite of arachidonic acid, can promote cell survival during ischemia/reperfusion. However, whether the mitochondrial apoptotic pathway is involved this survival mechanism is not fully understood. In this study, we observed that infarct size in ischemia-reperfusion injury was reduced in sEH gene knockout mice. In addition, Caspase 3 activation, cytochrome C release and AIF nuclear translocation were also inhibited. In this study, 14,15-EET pretreatment reduced neuronal apoptosis in the oxygen-glucose deprivation and re-oxygenation group in vitro. The mitochondrial apoptosis pathway was also inhibited, as evidenced by AIF translocation from the mitochondria to nucleus and the reduction in the expressions of cleaved-caspase 3 and cytochrome C in the cytoplasm. 14,15-EET could reduce neuronal apoptosis through upregulation of the ratio of Bcl-2 (anti-apoptotic protein) to Bax (apoptosis protein) and inhibition of Bax aggregation onto mitochondria. PI3K/AKT pathway is also probably involved in the reduction of neuronal apoptosis by EET. Our study suggests that 14,15-EET could suppress neuronal apoptosis and reduce infarct volume through the mitochondrial apoptotic pathway. Furthermore, the PI3K/AKT pathway also appears to be involved in the neuroprotection against ischemia-reperfusion by 14,15-EET.


Asunto(s)
Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Apoptosis/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Daño por Reperfusión/tratamiento farmacológico , Ácido 8,11,14-Eicosatrienoico/farmacología , Animales , Apoptosis/fisiología , Citocromos c/efectos de los fármacos , Citocromos c/metabolismo , Masculino , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Daño por Reperfusión/metabolismo , Transducción de Señal/fisiología
5.
Neural Regen Res ; 11(2): 312-8, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27073386

RESUMEN

To investigate the pattern of neural differentiation and synaptogenesis in the mouse retina, immunolabeling, BrdU assay and transmission electron microscopy were used. We show that the neuroblastic cell layer is the germinal zone for neural differentiation and retinal lamination. Ganglion cells differentiated initially at embryonic day 13 (E13), and at E18 horizontal cells appeared in the neuroblastic cell layer. Neural stem cells in the outer neuroblastic cell layer differentiated into photoreceptor cells as early as postnatal day 0 (P0), and neural stem cells in the inner neuroblastic cell layer differentiated into bipolar cells at P7. Synapses in the retina were mainly located in the outer and inner plexiform layers. At P7, synaptophysin immunostaining appeared in presynaptic terminals in the outer and inner plexiform layers with button-like structures. After P14, presynaptic buttons were concentrated in outer and inner plexiform layers with strong staining. These data indicate that neural differentiation and synaptogenesis in the retina play important roles in the formation of retinal neural circuitry. Our study showed that the period before P14, especially between P0 and P14, represents a critical period during retinal development. Mouse eye opening occurs during that period, suggesting that cell differentiation and synaptic formation lead to the attainment of visual function.

6.
J Neurosci Res ; 92(4): 496-505, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24474045

RESUMEN

Recently, cold-adaptation medicine has gotten more and more attention because of its specific significance to health care, military activities, sports performance, and so on. Although numerous studies have focused on respiratory, immune, and circulatory systems as well as skin damage upon cold exposure, the impacts on central nervous system are not well understood. This study explores the effects of chronic cold exposure on the murine central nervous system. To establish a chronic cold-exposure animal model, adult male mice from postnatal days 40-50 (P40-50) were housed at 0-4°C for 20 days. During the study period, estrogen receptors were labeled via immunohistochemistry, the dendritic spines of visual cortical pyramidal cells were labeled with DiI diolistic assay, and synaptic ultrastructure was observed by transmission electron microscopy. The results showed that cold exposure could inhibit neural proliferation significantly, with an increase of G-protein-coupled receptor 30 (GPR30) expression. Chronic cold exposure could also induce a decrease in the dendritic spines of pyramidal cells in visual cortex, along with a decrease in the number of synaptic formations. The ultrastructure of synapses after cold exposure was observed. It was found that pre- and postsynaptic membranes were fused, with a vague synaptic cleft. Furthermore, neuronal cytoplasmic and organelle swellings were also observed, along with microtubule disintegration. In conclusion, chronic cold exposure can cause structural and functional changes in the mouse central nervous system, possibly by direct participation of estrogen and its receptor, GPR30, in response to chronic cold exposure.


Asunto(s)
Adaptación Fisiológica/fisiología , Sistema Nervioso Central/fisiología , Frío , Regulación de la Expresión Génica/fisiología , Neuronas/metabolismo , Animales , Conducta Animal , Bromodesoxiuridina/metabolismo , Proliferación Celular , Sistema Nervioso Central/citología , Espinas Dendríticas/fisiología , Masculino , Ratones , Microscopía Electrónica de Transmisión , Neuronas/ultraestructura , Receptores de Estrógenos , Receptores Acoplados a Proteínas G/metabolismo , Sinapsis/fisiología
7.
Alcohol Alcohol ; 47(4): 380-5, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22414921

RESUMEN

AIMS: Our aim is to investigate the effects of prenatal alcohol exposure (PAE) on the development of retinal bipolar and horizontal cells. METHODS: The alterations of the retinal bipolar and horizontal cells in P7, P14 and P30 mice were observed after PAE, with immunofluorescent labeling and DiI diolistic assay. RESULTS: The retinal development of filial pups was affected by PAE in a dose-dependent and long-term manner. The number of bipolar cells of alcohol groups was significantly lower than that of the control, and the dendritic receptive field of horizontal cells was also significantly smaller than those of the control groups (P < 0.01). CONCLUSION: PAE was able to cause retarded development of pup retinal neural cells.


Asunto(s)
Etanol/efectos adversos , Trastornos del Espectro Alcohólico Fetal/patología , Efectos Tardíos de la Exposición Prenatal/patología , Retina/anomalías , Células Bipolares de la Retina/efectos de los fármacos , Células Horizontales de la Retina/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Etanol/sangre , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Embarazo , Células Bipolares de la Retina/patología , Células Horizontales de la Retina/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA