Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anticancer Drugs ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39018257

RESUMEN

Cervical cancer is among the most common gynecological malignancies. G protein-coupled estrogen receptor (GPER) is involved in the development of various tumors; however, its role in cervical cancer remains unclear. We investigated whether G15, an inhibitor of GPER, can regulate its expression and affect cervical cancer progression. We examined the biological behaviors of G15-treated SiHa and HeLa cells using Cell Counting Kit-8, monoclonal proliferation, plate scratching, and Transwell invasion experiments. Western blotting was used to detect the expression of GPER, E-cadherin, N-cadherin, vimentin, Bcl-2, Bax, phosphatidylinositol-3-kinase (PI3K)/AKT, and programmed death ligand 1 (PD-L1). The expression of GPER, E-cadherin, vimentin, and PD-L1 in cervical cancer and adjacent tissues was detected using immunohistochemistry. The correlation between GPER expression and clinicopathological characteristics was analyzed. The expression of GPER in cervical cancer tissues was significantly higher than that in paracancerous tissues, and it was detected in the membrane and cytoplasm of SiHa and HeLa cells. The proliferation, migration, and invasion abilities of SiHa and HeLa cells were reduced after G15 treatment. The G15-treated groups exhibited higher expression of E-cadherin and Bax and lower expression of N-cadherin, vimentin, Bcl-2, GPER, p-PI3K, p-AKT, and PD-L1 than the control group. The expression of E-cadherin was lower and that of vimentin was higher in cancer tissues than in paracancerous tissues; PD-L1 was highly expressed in tumor and stromal cells in cancer tissues but not in paracancerous tissues. G15 functions by regulating the GPER/PI3K/AKT/PD-L1 signaling pathway and may serve as a new immunotherapy for treating patients with cervical cancer.

2.
Aging (Albany NY) ; 16(5): 4363-4377, 2024 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-38441564

RESUMEN

BACKGROUND: Neuronal injury in chronic cerebral hypoperfusion (CCH) is the main pathogenic factor of vascular dementia (VD). Clinically, there isn't a drug specifically for VD; instead, the majority of medications used to treat Alzheimer's disease (AD) are also used to treat VD. Based on the proven anti-inflammatory and antioxidant effects of Probucol, we hypothesized that it may have therapeutic effects on VD, but more research is required to determine its exact mechanism of action. METHODS: In vivo experiment: We used SD rats and most commonly used bilateral carotid artery occlusion (2-VO) in VD for modeling. After successful modeling, SD rats were given Probucol 3.5 mg/kg/day for 8 weeks to evaluate the therapeutic effect. In vitro experiment: BV-2 microglia of rats were cultured and divided into Control group and Probucol group. Each group was treated with hypoxia-hypoglycemia, hypoxia-hypoglycemia hydrogen peroxide and hypoxia-hypoglycemia hydrogen peroxide Syk inhibitor respectively. RESULTS: The results of immunofluorescence and Western blot showed that Probucol could significantly improve the cognitive impairment induced by CCH, and the neuronal damage was also attenuated. On the one hand, the underlying mechanism of Probucol was to reduce oxidative stress and cell apoptosis of hippocampal neurons by inhibiting the expression of phosphorylated spleen tyrosine kinase (P-Syk); On the other hand, it exerted a protective effect by reducing NLRP3-dependent cell pyroptosis and inhibiting neuroinflammation induced by microglia activation. CONCLUSION: Probucol could reduce oxidative stress and cell apoptosis by inhibiting the Syk/ROS signaling pathway, thereby improving CCH-induced cognitive impairment in vitro and in vivo.


Asunto(s)
Isquemia Encefálica , Demencia Vascular , Hipoglucemia , Ratas , Animales , Demencia Vascular/tratamiento farmacológico , Demencia Vascular/etiología , Demencia Vascular/metabolismo , Probucol/farmacología , Especies Reactivas de Oxígeno/metabolismo , Ratas Sprague-Dawley , Piroptosis , Peróxido de Hidrógeno/farmacología , Isquemia Encefálica/metabolismo , Hipocampo/metabolismo , Hipoxia/metabolismo
3.
Int J Gen Med ; 16: 997-1015, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36974063

RESUMEN

Purpose: The efficacy of immunotherapy for non-small cell lung cancer (NSCLC) is limited owing to cold tumors and drug resistance. Therefore, it is important to identify the molecular mechanisms underlying immune evasion in NSCLC. Spontaneous ferroptosis of neutrophils has been suggested as a key mechanism of immunosuppression in cancer. Insulin-like growth factor binding protein 1 (IGFBP1) plays an important role in immune infiltration in several cancers. However, the role of IGFBP1 in NSCLC is unknown. Therefore, in this study, we aimed to investigate the association of IGFBP1 mRNA expression with infiltration of myeloid-derived suppressor cells and prognosis in NSCLC. Patients and Methods: Retrospective RNA-seq data from 990 patients in the Cancer Genome Atlas (TCGA) database were analyzed in relation to patient clinical characteristics. The Timer2 database was used to assess immune infiltration, and the FerrDb V2 database was used to obtain ferroptosis-related genes. Finally, the results were validated by the proteomic analysis of serum samples collected from six patients with NSCLC and six healthy individuals. Results: IGFBP1 expression was enriched in lung adenocarcinoma samples and positively correlated with the pathological grade of NSCLC. IGFBP1 expression was an independent prognostic factor for the overall survival of patients with NSCLC. In addition, IGFBP1 expression correlated with myeloid-derived suppressor cell infiltration. Notably, Gene Ontology analysis of IGFBP1-related genes revealed that the major molecular functions of their protein products were related to NADP+ 1-oxidoreductase activity. Furthermore, expression levels of multiple ferroptosis suppressor genes positively correlated with IGFBP1 expression. Conclusion: High IGFBP1 expression indicates a poor prognosis in patients with NSCLC, which may be related to tumor immunosuppression caused by neutrophil ferroptosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA