Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-31781517

RESUMEN

Background: Sexually transmitted diseases (STD) are a major cause of infertility, long-term disability, ectopic pregnancy, and premature birth. Therefore, the development of fast and low-cost laboratory STD diagnostic screening methods will contribute to reducing STD-induced reproductive tract damage and improve women's health worldwide. In this study, we evaluated a novel multiplex real-time PCR melting curve assay method for the simultaneous detection of 9 STD pathogens, including Chlamydia trachomatis, Neisseria gonorrhoeae, Mycoplasma genitalium, Trichomonas vaginalis, Mycoplasma hominis, Ureaplasma urealyticum, Ureaplasma parvum, and herpes simplex virus. Methods: The analytical performance of the method, including its limit of detection (LOD), specificity, repeatability, and effect on different DNA extraction kits were evaluated. Additionally, we obtained 1,328 clinical specimens from 3 hospitals to detect the 9 STD pathogens using multiplex real-time PCR melting curve and Sanger sequencing, to evaluate the sensitivity, specificity, and consistency of the assay method. Results: The results showed that the analytical sensitivity of the novel multiplex real-time PCR melting curve assay is very excellent, with LOD of DNA corresponding to <200 copies/µL for the DNA of the 9 STDs and 1.00 × 104 color change unit /ml for those of UU and UP. Additionally, this assay demonstrated excellent analytical specificity, excellent repeatability, and its results had no effect of different DNA extraction kits. The performance, in terms of sensitivity (91.06-100%) and specificity (99.14-100%), was remarkable, since the consistency between it and Sanger sequencing was more than 0.85 in the clinic. Conclusion: The novel multiplex real-time PCR melting curve assay method has high sensitivity and specificity, relatively low cost, and simple to use for the simultaneous detection of 9 STD pathogens in genitourinary secretions.


Asunto(s)
Secreciones Corporales , Reacción en Cadena en Tiempo Real de la Polimerasa , Enfermedades de Transmisión Sexual/diagnóstico , Enfermedades de Transmisión Sexual/etiología , Sistema Urogenital/metabolismo , Femenino , Humanos , Masculino , Reacción en Cadena de la Polimerasa Multiplex/métodos , Reacción en Cadena de la Polimerasa Multiplex/normas , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa/normas , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
2.
Yi Chuan ; 37(9): 918-25, 2015 09.
Artículo en Inglés | MEDLINE | ID: mdl-26399531

RESUMEN

Histone deacetylases (HDACs) are responsible for catalyzing the deacetylation of histones, which closely related to many biological processes such as cell proliferation, differentiation and apoptosis. In recent years, HDAC inhibitors (HADCIs), with the anti-tumor potential, have been hot-spots of drug screening. Although the latest studies suggested that HDAC2 might influence the metabolism, the mechanism of HDACIs in metabolic regulation is still unclear. Here, we integrated the gene expression profiling of HDACIs (TSA and SAHA) in hepatocellular carcinoma cell (HepG2). The results showed 380 differentially expressed genes (DEGs) and 35 KEGG pathways enriched by DEGs in TSA-treatment group. Most of DEGs (177/380) and KEGG pathways (23/35) from TSA-treatment groups were confirmed by SAHA-treatment. About half of KEGG pathways (9/23) were related to metabolism ,and nearly one third of common DEGs (66/177) were involved in metabolic process. Moreover, HDAC2 siRNA experiment verified the effect of HDACIs on metabolic genes, suggesting that HDACIs potentially present a practical value to prevent tumor and other metabolism-related diseases.


Asunto(s)
Inhibidores de Histona Desacetilasas/farmacología , Transcriptoma , Expresión Génica/efectos de los fármacos , Células Hep G2 , Humanos , Ácidos Hidroxámicos/farmacología , Vorinostat
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA