Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 7(35): 31442-31447, 2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36092566

RESUMEN

A molecular tweezer trans-di(perylene-3-ylmethanaminobenzo)-18-crown-6 (DP-18C6) incorporating two perylene subunits in a single crown ether core was designed and synthesized as a host for fullerenes. Through the cooperative effect of the perylene subunits and the crown ether moiety, DP-18C6 can efficiently recognize fullerenes including C60, C70, and C76. 1H NMR titration and fluorescence titration experiments demonstrated that DP-18C6 can effectively grasp the fullerene molecule to form a 1:1 host-guest complex. Density functional theory calculations revealed the presence of intermolecular π-π interactions between the perylene subunits of DP-18C6 and the fullerene molecule. More importantly, DP-18C6 exhibited remarkably high binding selectivity for higher fullerenes over C60, revealing potential application for the separation of fullerenes by means of host-guest interactions.

2.
Nanomaterials (Basel) ; 12(15)2022 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-35893515

RESUMEN

Unlike traditional small molecule drugs, fullerene is an all-carbon nanomolecule with a spherical cage structure. Fullerene exhibits high levels of antiviral activity, inhibiting virus replication in vitro and in vivo. In this review, we systematically summarize the latest research regarding the different types of fullerenes investigated in antiviral studies. We discuss the unique structural advantage of fullerenes, present diverse modification strategies based on the addition of various functional groups, assess the effect of structural differences on antiviral activity, and describe the possible antiviral mechanism. Finally, we discuss the prospective development of fullerenes as antiviral drugs.

3.
J Am Chem Soc ; 144(30): 13839-13850, 2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35862295

RESUMEN

Despite their multifaceted advantages, inverted perovskite solar cells (PSCs) still suffer from lower power conversion efficiencies (PCEs) than their regular counterparts, which is largely due to recombination energy losses (Eloss) that arise from the chemical, physical, and energy level mismatches, especially at the interfaces between perovskites and fullerene electron transport layers (ETLs). To address this problem, we herein introduce an aminium iodide derivative of a buckybowl (aminocorannulene) that is molecularly layered at the perovskite-ETL interface. Strikingly, besides passivating the PbI2-rich perovskite surface, the aminocorannulene enforces a vertical dipole and enhances the surface n-type character that is more compatible with the ETL, thus boosting the electron extraction and transport dynamics and suppressing interfacial Eloss. As a result, the champion PSC achieves an excellent PCE of over 22%, which is superior compared to that of the control device (∼20%). Furthermore, the device stability is significantly enhanced, owing to a lock-and-key-like grip on the mobile iodides by the buckybowls and the resultant increase of the interfacial ion-migration barrier. This work highlights the potential of buckybowls for the multifunctional surface engineering of perovskite toward high-performance and stable PSCs.

4.
Nanomaterials (Basel) ; 12(9)2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35564135

RESUMEN

Due to the partially reduced π-conjugation of the fullerene cage, multi-functionalized fullerene derivatives exhibit remarkable fluorescent properties compared to pristine fullerenes, which have high potential for application in organic light-emitting diodes (OLEDs). In this study two multi-functionalized C70 derivatives, C70(OCH3)10[C(COOEt)2] and C70(OCH3)10[C(COOEt)2]2, with excellent fluorescence properties, were designed and synthesized. Compared with C70(OCH3)10 containing a single kind of functional group, both the C70(OCH3)10[C(COOEt)2] and C70(OCH3)10[C(COOEt)2]2 exhibited enhanced fluorescence properties with blue fluorescence emission. The fluorescence quantum yields of the C70(OCH3)10[C(COOEt)2] and C70(OCH3)10[C(COOEt)2]2 were 1.94% and 2.30%, respectively, which were about ten times higher than that of C70(OCH3)10. The theoretical calculations revealed that the multi-functionalization of the C70 increased the S1-T1 energy gap, reducing the intersystem crossing efficiency, resulting in the higher fluorescence quantum yield of the C70 derivatives. The results indicate that multi-functionalization is a viable strategy to improve the fluorescence of fullerene derivatives.

5.
ACS Appl Mater Interfaces ; 12(31): 35081-35087, 2020 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-32667770

RESUMEN

In p-i-n structure perovskite solar cells (PSCs), the most prevalent electron transport layer (ETL), [6, 6]-phenyl-C61-butyric acid methyl ester (PC61BM), acts as both electron extractor and protective coverage to the underlayer perovskite. Notably, multifunctional mixed fullerene ETLs show great potential in further improving both the power conversion efficiency (PCE) and stability of PSCs compared to the single PC61BM ETL. In this work, we reported the mixed fullerene ETLs comprising of PC61BM and its two analogs with different length of fluorocarbon chains, [6, 6]-phenyl-C61-buryric acid 1H,1H-trifluoro-1-ethyl ester (abbreviated, CF3-PC61BM) and [6, 6]-phenyl-C61-buryric acid 1H, 1H-tridecafluoro-1-heptyl ester (abbreviated, C6F13-PC61BM). We obtained excellent PCEs of 18.37% and 17.71% for 1 wt % CF3-PC61BM- and C6F13-PC61BM-based PSCs (1 wt % addition of PC61BM) with CH3NH3PbI3 (MAPbI3) perovskites, respectively. Moreover, champion PCEs of ∼19% were obtained based on the CsFAMAPbIBr perovskites. Subsequent experiments demonstrated that the fluorocarbon chains of CF3-PC61BM and C6F13-PC61BM assembled at the surfaces of ETLs with the formation of thin-layer moisture-resistant protective coverage above perovskite. Results show that it significantly retarded water penetrating down to perovskite layers and led to optimal humidity stability under ambient atmosphere.

6.
ACS Appl Mater Interfaces ; 12(18): 20733-20740, 2020 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-32286057

RESUMEN

The structure-dependent thermal stability of fullerene electron transport layers (ETLs) and its impact on device stability have been underrated for years. Based on cocrystallographic understanding, herein, we develop a thermally stable ETL comprising a hybrid layer of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) and [6,6]-phenyl-C61-propylbenzene (PCPB). By tuning the weight ratios of PCBM and PCPB to influence the noncovalent intermolecular interactions and packing of fullerene derivatives, we obtained a champion device based on the 20PCPB (20 wt % addition of PCPB into the mixture of PCBM/PCPB) ETL and excellent thermal stability of 500 h under 85 °C thermal aging in a N2 atmosphere in the dark. The present work exemplifies that cocrystallography can be a precise tool to probe the interaction and aggregation of fullerene derivatives in ETLs, and mixed fullerene derivatives can be sought as promising ETLs to enhance the long-term stability of perovskite solar cells under high-temperature working environments.

7.
Nanomicro Lett ; 12(1): 84, 2020 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-34138089

RESUMEN

Previous reports of formamidinium/methylamine (FAMA)-mixed halide perovskite solar cells have focused mainly on controlling the morphology of the perovskite film and its interface-for example, through the inclusion of bromine and surface passivation. In this paper, we describe a new processing pathway for the growth of a high-quality bromine-free FAMAPbI3 halide perovskites via the control of intermediate phase. Through low-temperature aging growth (LTAG) of a freshly deposited perovskite film, α-phase perovskites can be seeded in the intermediate phase and, at the same time, prevent beta-phase perovskite to nucleate. After postannealing, large grain-size perovskites with significantly reduced PbI2 presence on the surface can be obtained, thereby eliminating the need of additional surface passivation step. Our pristine LTAG-treated solar cells could provide PCEs of greater than 22% without elaborate use of bromine or an additional passivation layer. More importantly, when using this LTAG process, the growth of the pure alpha-phase FAMAPbI3 was highly reproducible.

8.
ACS Appl Mater Interfaces ; 11(27): 23982-23989, 2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-31257863

RESUMEN

In regular perovskite solar cells (PSCs), the commonly used electron transport layer (ETL) is titanium oxide (TiO2). Nevertheless, the preparation of a high-quality TiO2 ETL demands an elevated-temperature sintering procedure, unfavorable for fabrication of PSCs on flexible substrates. Besides, TiO2-based devices often suffer from notorious photocurrent hysteresis and serious light soaking instability, limiting their potential commercialization. Herein, a novel pyridine-functionalized fullerene derivative [6,6]-(4-pyridinyl)-C61-ethyl acid ethyl ester (PyCEE) was synthesized and applied as an ETL to replace TiO2 in n-i-p PSCs. PyCEE-based devices achieved a champion power conversion efficiency (PCE) of 18.27% with significantly suppressed hysteresis, superior to that of TiO2-based devices. PyCEE has suitable energy levels and high electron mobility, which facilitate electron extraction/transport. Besides, the pyridine moiety within PyCEE affords coordination interactions with the Pb2+ ion within CH3NH3PbI3, passivating the trap states of CH3NH3PbI3 and thus improving the device performance and suppressing hysteresis greatly. Moreover, PyCEE ETLs were applied in flexible PSCs, achieving a PCE of 15.25%. Our results demonstrated the applicability of PyCEE ETLs in flexible devices and provided new opportunity for the commercialization of PSCs.

9.
Nanoscale ; 9(45): 17893-17901, 2017 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-29119988

RESUMEN

Organic-inorganic perovskite solar cells have emerged as a promising photovoltaic technology because of their advantages such as low cost, high efficiency, and solution processability. The performance of perovskite solar cells is highly dependent on the crystallinity and morphology of the perovskite films. Herein, we report a simple, one-step anti-solvent deposition process using di-isopropyl ether as a dripping solvent to obtain extremely uniform and highly crystalline CH3NH3PbI3 perovskite films. Compared to toluene, chlorobenzene, chloroform, or diethyl ether, di-isopropyl ether has proven to be a more suitable solvent for an anti-solvent deposition process. The perovskite solar cells fabricated by the anti-solvent deposition process using di-isopropyl ether treatment exhibit an average power conversion efficiency (PCE) of 17.67 ± 0.54% and the highest PCE of 19.07%. Moreover, the higher boiling point of di-isopropyl ether makes the anti-solvent deposition process more tolerant to elevated ambient temperature, which can be carried out at ambient temperatures up to 40 °C. Our results demonstrate that di-isopropyl ether is an excellent dripping solvent in the anti-solvent deposition process for efficient and reproducible perovskite solar cells.

10.
Nanoscale Res Lett ; 12(1): 159, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28249374

RESUMEN

Perovskite solar cells are emerging as one of the most promising candidates for solar energy harvesting. To date, most of the high-performance perovskite solar cells have exclusively employed organic hole-transporting materials (HTMs) such as 2,2',7,7'-tetrakis-(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (spiro-OMeTAD) or polytriarylamine (PTAA) which are often expensive and have low hole mobility. Almost all these HTMs reported needed lithium salt, e.g., lithium bis(trifluoromethylsulfonyl)imide (Li-TFSI) doping, to improve hole mobility and performance. However, the use of Li-TFSI should be avoided because the hygroscopic nature of Li-TFSI could cause decomposition of perovskite and reduce device stability. Herein, we employed solution-processed CuIn0.1Ga0.9(S0.9Se0.1)2 (CIGSSe) nanocrystals as a novel inorganic HTM in perovskite solar cells. A power conversion efficiency of 9.15% was obtained for CIGSSe-based devices with improved stability, compared to devices using spiro-OMeTAD as HTM. This work offers a promising candidate of Cu-based inorganic HTM for efficient and stable perovskite solar cells.

11.
Chemistry ; 22(52): 18709-18713, 2016 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-27735092

RESUMEN

Despite being widely used as electron acceptor in polymer solar cells, commercially available PC71 BM (phenyl-C71 -butyric acid methyl ester) usually has a "random" composition of mixed regioisomers or stereoisomers. Here PC71 BM has been isolated into three typical isomers, α-, ß1 - and ß2 -PC71 BM, to establish the isomer-dependent photovoltaic performance on changing the ternary composition of α-, ß1 - and ß2 -PC71 BM. Mixing the isomers in a ratio of α/ß1 /ß2 =8:1:1 resulted in the best power conversion efficiency (PCE) of 7.67 % for the polymer solar cells with PTB7:PC71 BM as photoactive layer (PTB7=poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]]). The three typical PC71 BM isomers, even though sharing similar LUMO energy levels and light absorption, render starkly different photovoltaic performances with average-performing PCE of 1.28-7.44 % due to diverse self-aggregation of individual or mixed PC71 BM isomers in the otherwise same polymer solar cells.

12.
ACS Appl Mater Interfaces ; 8(33): 21358-65, 2016 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-27480286

RESUMEN

Perovskite solar cells (PSCs) with TiO2 materials have attracted much attention due to their high photovoltaic performance. Aligned TiO2 nanorods have long been used for potential application in highly efficient perovskite solar cells, but the previously reported efficiencies of perovskite solar cells based on TiO2 nanorod arrays were underrated. Here we show a solvothermal method based on a modified ketone-HCl system with the addition of organic acids suitable for modulation of the TiO2 nanorod array films to fabricate highly efficient perovskite solar cells. Photovoltaic measurements indicated that efficient nanorod-structured perovskite solar cells can be achieved with the length of the nanorods as long as approximately 200 nm. A record efficiency of 18.22% under the reverse scan direction has been optimized by avoiding direct contact between the TiO2 nanorods and the hole transport materials, eliminating the organic residues on the nanorod surfaces using UV-ozone treatment and tuning the nanorod array morphologies through addition of different organic acids in the solvothermal process.

13.
Chemistry ; 18(11): 3408-15, 2012 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-22311643

RESUMEN

The hydrofullerene C(50)H(10) is synthesized by low-pressure benzene-oxygen diffusion combustion. The structure of C(50)H(10) is identified through NMR, mass spectrometry, and IR and Raman spectroscopy as a D(5h) symmetric closed-cage molecule with five pairs of fused pentagons stabilized by ten hydrogen atoms. UV/Vis and fluorescence spectrometric analyses disclose its optical properties as comparable with those of its chloride cousin (C(50)Cl(10)). Cyclic and square-wave voltammograms reveal that the first reduction potential of C(50)H(10) is more negative than that of C(50)Cl(10) as well as C(60), with implications for the utilization of C(50)H(10) as a promising electron acceptor for photovoltaic applications.


Asunto(s)
Fulerenos/química , Modelos Moleculares , Cloruros , Cristalografía por Rayos X , Electroquímica , Espectroscopía de Resonancia Magnética , Estructura Molecular , Espectrometría de Fluorescencia , Espectrometría Raman
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...