Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 199
Filtrar
1.
J Clin Anesth ; 95: 111467, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38593491

RESUMEN

STUDY OBJECTIVE: To assess the impact of preoperative infection with the contemporary strain of severe acute respiratory coronavirus 2 (SARS-CoV-2) on postoperative mortality, respiratory morbidity and extrapulmonary complications after elective, noncardiac surgery. DESIGN: An ambidirectional observational cohort study. SETTING: A tertiary and teaching hospital in Shanghai, China. PATIENTS: All adult patients (≥ 18 years of age) who underwent elective, noncardiac surgery under general anesthesia at Huashan Hospital of Fudan University from January until March 2023 were screened for eligibility. A total of 2907 patients were included. EXPOSURE: Preoperative coronavirus disease 2019 (COVID-19) positivity. MEASUREMENTS: The primary outcome was 30-day postoperative mortality. The secondary outcomes included postoperative pulmonary complications (PPCs), myocardial injury after noncardiac surgery (MINS), acute kidney injury (AKI), postoperative delirium (POD) and postoperative sleep quality. Multivariable logistic regression was used to assess the risk of postoperative mortality and morbidity imposed by preoperative COVID-19. MAIN RESULTS: The risk of 30-day postoperative mortality was not associated with preoperative COVID-19 [adjusted odds ratio (aOR), 95% confidence interval (CI): 0.40, 0.13-1.28, P = 0.123] or operation timing relative to diagnosis. Preoperative COVID-19 did not increase the risk of PPCs (aOR, 95% CI: 0.99, 0.71-1.38, P = 0.944), MINS (aOR, 95% CI: 0.54, 0.22-1.30; P = 0.168), or AKI (aOR, 95% CI: 0.34, 0.10-1.09; P = 0.070) or affect postoperative sleep quality. Patients who underwent surgery within 7 weeks after COVID-19 had increased odds of developing delirium (aOR, 95% CI: 2.26, 1.05-4.86, P = 0.036). CONCLUSIONS: Preoperative COVID-19 or timing of surgery relative to diagnosis did not confer any added risk of 30-day postoperative mortality, PPCs, MINS or AKI. However, recent COVID-19 increased the risk of POD. Perioperative brain health should be considered during preoperative risk assessment for COVID-19 survivors.


Asunto(s)
COVID-19 , Procedimientos Quirúrgicos Electivos , Complicaciones Posoperatorias , Humanos , COVID-19/mortalidad , COVID-19/epidemiología , COVID-19/complicaciones , Femenino , Masculino , Persona de Mediana Edad , Complicaciones Posoperatorias/epidemiología , Complicaciones Posoperatorias/etiología , Complicaciones Posoperatorias/mortalidad , Procedimientos Quirúrgicos Electivos/efectos adversos , Anciano , China/epidemiología , Estudios de Cohortes , Adulto , Factores de Riesgo , Periodo Preoperatorio
2.
Phytomedicine ; 129: 155592, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38608597

RESUMEN

BACKGROUND: Vascular smooth muscle cell (VSMC) proliferation and phenotypic switching are key mechanisms in the development of proliferative arterial diseases. Notably, reprogramming of the glucose metabolism pattern in VSMCs plays an important role in this process. PURPOSE: The aim of this study is to investigate the therapeutic potential and the mechanism underlying the effect of bergenin, an active compound found in Bergenia, in proliferative arterial diseases. METHODS: The effect of bergenin on proliferative arterial disease was evaluated using platelet-derived growth factor (PDGF)-stimulated VSMCs and a mouse model of carotid artery ligation. VSMC proliferation and phenotypic switching were evaluated in vitro using cell counting kit-8, 5-ethynyl-2-deoxyuridine incorporation, scratch, and transwell assays. Carotid artery neointimal hyperplasia was evaluated in vivo using hematoxylin and eosin staining and immunofluorescence. The expression of proliferation and VSMC contractile phenotype markers was evaluated using PCR and western blotting. RESULTS: Bergenin treatment inhibited PDGF-induced VSMC proliferation and phenotypic switching and reduced neointimal hyperplasia in the carotid artery ligation model. Additionally, bergenin partially reversed the PDGF-induced Warburg-like glucose metabolism pattern in VSMCs. RNA-sequencing data revealed that bergenin treatment significantly upregulated Ndufs2, an essential subunit of mitochondrial complex I. Ndufs2 knockdown attenuated the inhibitory effect of bergenin on PDGF-induced VSMC proliferation and phenotypic switching, and suppressed neointimal hyperplasia in vivo. Conversely, Ndufs2 overexpression enhanced the protective effect of bergenin. Moreover, Ndufs2 knockdown abrogated the effects of bergenin on the regulation of glucose metabolism in VSMCs. CONCLUSION: These findings suggest that bergenin is effective in alleviating proliferative arterial diseases. The reversal of the Warburg-like glucose metabolism pattern in VSMCs during proliferation and phenotypic switching may underlie this therapeutic mechanism.

3.
Behav Sci (Basel) ; 14(3)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38540478

RESUMEN

This research examined the effects of principal transformational leadership on teachers' inclusive teaching behaviour, with a particular inquiry into the mediating effects of teachers' inclusive role identity and efficacy for inclusive practice, as informed by identity theory and social cognitive theory. Structural equation modelling with bootstrapping estimation was conducted using data from 712 teachers delivering inclusive teaching in primary or secondary schools in China. The results revealed the sequentially mediating mechanisms of teachers' inclusive role identity and efficacy underlying the principal transformational leadership effects on teachers' inclusive teaching behaviour. Research implications are also discussed.

4.
Neurotoxicology ; 102: 1-11, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38461971

RESUMEN

Although overexposure to manganese (Mn) is known to cause neurotoxic damage, effective exposure markers for assessing Mn loading in Mn-exposed workers are lacking. Here, we construct a Mn-exposed rat model to perform correlation analysis between Mn-induced neurological damage and Mn levels in various biological samples. We combine this analysis with epidemiological investigation to assess whether Mn concentrations in red blood cells (MnRBCs) and urine (MnU) can be used as valid exposure markers. The results show that Mn exposure resulted in neurotoxic damage in rats and that MnRBCs correlated well with neurological damage, showing potential as a novel Mn exposure biomarker. These findings provide a basis for health monitoring of Mn-exposed workers and the development of more appropriate biological exposure limits.

5.
Bioorg Chem ; 146: 107297, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38503027

RESUMEN

In our previous study, a screening of a variety of lycotonine-type diterpenoid alkaloids were screened for cardiotonic activity revealed that lycoctonine had moderate cardiac effect. In this study, a series of structurally diverse of lycoctonine were synthesized by modifying on B-ring, D-ring, E-ring, F-ring, N-atom or salt formation on lycoctonine skeleton. We evaluated the cardiotonic activity of the derivatives by isolated frog heart, aiming to identify some compounds with significantly enhanced cardiac effects, among which compound 27 with a N-isobutyl group emerged as the most promising cardiotonic candidate. Furthermore, the cardiotonic mechanism of compound 27 was preliminarily investigated. The result suggested that the cardiotonic effect of compound 27 is related to calcium channels. Patch clamp technique confirmed that the compound 27 had inhibitory effects on CaV1.2 and CaV3.2, with inhibition rates of 78.52 % ± 2.26 % and 79.05 % ± 1.59 % at the concentration of 50 µM, respectively. Subsequently, the protective effect of 27 on H9c2 cells injury induced by cobalt chloride was tested. In addition, compound 27 can alleviate CoCl2-induced myocardial injury by alleviating calcium overload. These findings suggest that compound 27 was a new structural derived from lycoctonine, which may serve as a new lead compound for the treatment of heart failure.


Asunto(s)
Aconitina/análogos & derivados , Alcaloides , Cardiotónicos , Cardiotónicos/farmacología , Aconitina/química , Alcaloides/farmacología , Alcaloides/química , Canales de Calcio , Calcio
6.
Brain Behav Immun ; 119: 36-50, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38555991

RESUMEN

This study aimed to elucidate the opioid mechanisms underlying dexamethasone-induced pain antihypersensitive effects in neuropathic rats. Dexamethasone (subcutaneous and intrathecal) and membrane-impermeable Dex-BSA (intrathecal) administration dose-dependently inhibited mechanical allodynia and thermal hyperalgesia in neuropathic rats. Dexamethasone and Dex-BSA treatments increased expression of dynorphin A in the spinal cords and primary cultured microglia. Dexamethasone specifically enhanced dynorphin A expression in microglia but not astrocytes or neurons. Intrathecal injection of the microglial metabolic inhibitor minocycline blocked dexamethasone-stimulated spinal dynorphin A expression; intrathecal minocycline, the glucocorticoid receptor antagonist Dex-21-mesylate, dynorphin A antiserum, and κ-opioid receptor antagonist GNTI completely blocked dexamethasone-induced mechanical antiallodynia and thermal antihyperalgesia. Additionally, dexamethasone elevated spinal intracellular cAMP levels, leading to enhanced phosphorylation of PKA, p38 MAPK and CREB. The specific adenylate cyclase inhibitor DDA, PKA inhibitor H89, p38 MAPK inhibitor SB203580 and CREB inhibitor KG-501 completely blocked dexamethasone-induced anti-neuropathic pain and increased microglial dynorphin A exprression. In conclusion, this study reveal that dexamethasone mitigateds neuropathic pain through upregulation of dynorphin A in spinal microglia, likely involving the membrane glucocorticoid receptor/cAMP/PKA/p38 MAPK/CREB signaling pathway.

7.
Mol Plant ; 17(4): 579-597, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38327054

RESUMEN

Among plant metabolites, phenolamides, which are conjugates of hydroxycinnamic acid derivatives and polyamines, play important roles in plant adaptation to abiotic and biotic stresses. However, the molecular mechanisms underlying phenolamide metabolism and regulation as well as the effects of domestication and breeding on phenolamide diversity in tomato remain largely unclear. In this study, we performed a metabolite-based genome-wide association study and identified two biosynthetic gene clusters (BGC7 and BGC11) containing 12 genes involved in phenolamide metabolism, including four biosynthesis genes (two 4CL genes, one C3H gene, and one CPA gene), seven decoration genes (five AT genes and two UGT genes), and one transport protein gene (DTX29). Using gene co-expression network analysis we further discovered that SlMYB13 positively regulates the expression of two gene clusters, thereby promoting phenolamide accumulation. Genetic and physiological analyses showed that BGC7, BGC11 and SlMYB13 enhance drought tolerance by enhancing scavenging of reactive oxygen species and increasing abscisic acid content in tomato. Natural variation analysis suggested that BGC7, BGC11 and SlMYB13 were negatively selected during tomato domestication and improvement, leading to reduced phenolamide content and drought tolerance of cultivated tomato. Collectively, our study discovers a key mechanism of phenolamide biosynthesis and regulation in tomato and reveals that crop domestication and improvement shapes metabolic diversity to affect plant environmental adaptation.


Asunto(s)
Resistencia a la Sequía , Solanum lycopersicum , Solanum lycopersicum/genética , Estudio de Asociación del Genoma Completo , Domesticación , Fitomejoramiento , Estrés Fisiológico/genética , Familia de Multigenes , Sequías , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
8.
BMC Cancer ; 24(1): 236, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38383374

RESUMEN

OBJECTIVE: Cemiplimab, a novel PD-1 inhibitor, exhibits significant antitumor activity against advanced non-small cell lung cancer (NSCLC). However, the cost-effectiveness of this drug for the treatment remains unclear. This study aimed to assess the cost-effectiveness of cemiplimab plus chemotherapy compared to chemotherapy for the treatment of advanced NSCLC, from the perspective of the United States payer. METHODS: A partitioned survival approach was developed to project the disease progression of NSCLC. Overall survival (OS) and progression-free survival (PFS) data were obtained from the EMPOWER lung 3 trial and extrapolated to estimate long-term survival outcomes. Direct medical costs and utility data were collected. The primary outcome measure, the incremental cost-utility ratio (ICUR), was used to evaluate the cost-effectiveness of cemiplimab plus chemotherapy regimen. One-way sensitivity analyses (OWSA) and probabilistic sensitivity analyses (PSA) were conducted to assess the robustness of the results. RESULTS: In the base-case analysis, the ICUR for cemiplimab plus chemotherapy versus chemotherapy alone was estimated to be $395,593.8 per quality-adjusted life year (QALY). OWSA revealed that the results were sensitive to Hazard ratio value, utility of PFS, and cost of cemiplimab. PSA demonstrated that cemiplimab plus chemotherapy exhibited 0% probability of cost-effectiveness.In hypothetical scenario analysis, the ICUR of two regimens was $188.803.3/QALY. OWSA revealed that the results were sensitive to the discount rate, utility, and cost of cemiplimab. PSA indicated that cemiplimab plus chemotherapy achieved at least an 11.5% probability of cost-effectiveness. CONCLUSION: Our cost-effectiveness analysis suggests that, at its current price, cemiplimab plus chemotherapy regimen is unlikely to be a cost-effective option compared with chemotherapy alone for advanced NSCLC patients, based on a threshold of $150,000 per QALY, from the perspective of the US payer.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Estados Unidos , Carcinoma de Pulmón de Células no Pequeñas/patología , Análisis Costo-Beneficio , Neoplasias Pulmonares/patología , Protocolos de Quimioterapia Combinada Antineoplásica , Años de Vida Ajustados por Calidad de Vida
9.
Ecotoxicol Environ Saf ; 272: 116029, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38290312

RESUMEN

Manganese is essential trace elements, to participate in the body a variety of biochemical reactions, has important physiological functions, such as stimulate the immune cell proliferation, strengthen the cellular immunity, etc. However, excessive manganese exposure can cause damage to multiple systems of the body.The immune system is extremely vulnerable to external toxicants, however manganese research on the immune system are inadequate and biomarkers are lacking. Therefore, here we applied a manganese-exposed rat model to make preliminary observations on the immunotoxic effects of manganese. We found that manganese exposure inhibited humoral immune function in rats by decreasing peripheral blood IgG (ImmunoglobulinG, IgG), IgM (ImmunoglobulinM, IgM) and complement C3 levels; It also regulates rat cellular immune activity by influencing peripheral blood, spleen, and thymus T cell numbers and immune organ ICs (Immune Checkpoints, ICs) and cytokine expression. Furthermore, it was revealed that the impact of manganese exposure on the immune function of rats exhibited a correlation with both the dosage and duration of exposure. Notably, prolonged exposure to high doses of manganese had the most pronounced influence on rat immune function, primarily manifesting as immunosuppression.The above findings suggest that manganese exposure leads to impaired immune function and related changes in immune indicators, or may provide clues for the discovery of its biomarkers.


Asunto(s)
Manganeso , Linfocitos T , Ratas , Animales , Manganeso/toxicidad , Inmunoglobulina M , Inmunoglobulina G , Biomarcadores
10.
Stem Cell Res Ther ; 15(1): 3, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167106

RESUMEN

Diabetes mellitus (DM) is a serious chronic metabolic disease that can lead to many serious complications, such as cardiovascular disease, retinopathy, neuropathy, and kidney disease. Once diagnosed with diabetes, patients need to take oral hypoglycemic drugs or use insulin to control blood sugar and slow down the progression of the disease. This has a significant impact on the daily life of patients, requiring constant monitoring of the side effects of medication. It also imposes a heavy financial burden on individuals, their families, and even society as a whole. Adipose-derived stem cells (ADSCs) have recently become an emerging therapeutic modality for DM and its complications. ADSCs can improve insulin sensitivity and enhance insulin secretion through various pathways, thereby alleviating diabetes and its complications. Additionally, ADSCs can promote tissue regeneration, inhibit inflammatory reactions, and reduce tissue damage and cell apoptosis. The potential mechanisms of ADSC therapy for DM and its complications are numerous, and its extensive regenerative and differentiation ability, as well as its role in regulating the immune system and metabolic function, make it a powerful tool in the treatment of DM. Although this technology is still in the early stages, many studies have already proven its safety and effectiveness, providing new treatment options for patients with DM or its complications. Although based on current research, ADSCs have achieved some results in animal experiments and clinical trials for the treatment of DM, further clinical trials are still needed before they can be applied in a clinical setting.


Asunto(s)
Diabetes Mellitus Experimental , Animales , Humanos , Diabetes Mellitus Experimental/metabolismo , Tejido Adiposo , Adipocitos/metabolismo , Glucemia/metabolismo , Células Madre/metabolismo
11.
Cell Death Discov ; 10(1): 40, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38245520

RESUMEN

As the latest and most anticipated method of tumor immunotherapy, CAR-NK therapy has received increasing attention in recent years, and its safety and high efficiency have irreplaceable advantages over CAR-T. Current research focuses on the application of CAR-NK in hematological tumors, while there are fewer studies on solid tumor. This article reviews the process of constructing CAR-NK, the effects of hypoxia and metabolic factors, NK cell surface receptors, cytokines, and exosomes on the efficacy of CAR-NK in solid tumor, and the role of CAR-NK in various solid tumor. The mechanism of action and the research status of the potential of CAR-NK in the treatment of solid tumor in clinical practice, and put forward the advantages, limitations and future problems of CAR-NK in the treatment of solid tumor.

12.
Sci China Life Sci ; 67(3): 475-487, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37219765

RESUMEN

Cardiopulmonary bypass has been speculated to elicit systemic inflammation to initiate acute lung injury (ALI), including acute respiratory distress syndrome (ARDS), in patients after cardiac surgery. We previously found that post-operative patients showed an increase in endothelial cell-derived extracellular vesicles (eEVs) with components of coagulation and acute inflammatory responses. However, the mechanism underlying the onset of ALI owing to the release of eEVs after cardiopulmonary bypass, remains unclear. Plasma plasminogen-activated inhibitor-1 (PAI-1) and eEV levels were measured in patients with cardiopulmonary bypass. Endothelial cells and mice (C57BL/6, Toll-like receptor 4 knockout (TLR4-/-) and inducible nitric oxide synthase knockout (iNOS-/-)) were challenged with eEVs isolated from PAI-1-stimulated endothelial cells. Plasma PAI-1 and eEVs were remarkably enhanced after cardiopulmonary bypass. Plasma PAI-1 elevation was positively correlated with the increase in eEVs. The increase in plasma PAI-1 and eEV levels was associated with post-operative ARDS. The eEVs derived from PAI-1-stimulated endothelial cells could recognize TLR4 to stimulate a downstream signaling cascade identified as the Janus kinase 2/3 (JAK2/3)-signal transducer and activator of transcription 3 (STAT3)-interferon regulatory factor 1 (IRF-1) pathway, along with iNOS induction, and cytokine/chemokine production in vascular endothelial cells and C57BL/6 mice, ultimately contributing to ALI. ALI could be attenuated by JAK2/3 or STAT3 inhibitors (AG490 or S3I-201, respectively), and was relieved in TLR4-/- and iNOS-/- mice. eEVs activate the TLR4/JAK3/STAT3/IRF-1 signaling pathway to induce ALI/ARDS by delivering follistatin-like protein 1 (FSTL1), and FSTL1 knockdown in eEVs alleviates eEV-induced ALI/ARDS. Our data thus demonstrate that cardiopulmonary bypass may increase plasma PAI-1 levels to induce FSTL1-enriched eEVs, which target the TLR4-mediated JAK2/3/STAT3/IRF-1 signaling cascade and form a positive feedback loop, leading to ALI/ARDS after cardiac surgery. Our findings provide new insight into the molecular mechanisms and therapeutic targets for ALI/ARDS after cardiac surgery.


Asunto(s)
Lesión Pulmonar Aguda , Vesículas Extracelulares , Proteínas Relacionadas con la Folistatina , Síndrome de Dificultad Respiratoria , Animales , Humanos , Ratones , Lesión Pulmonar Aguda/etiología , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/metabolismo , Células Endoteliales/metabolismo , Vesículas Extracelulares/metabolismo , Proteínas Relacionadas con la Folistatina/metabolismo , Proteínas Relacionadas con la Folistatina/uso terapéutico , Inflamación/metabolismo , Lipopolisacáridos/farmacología , Pulmón/metabolismo , Ratones Endogámicos C57BL , Inhibidor 1 de Activador Plasminogénico/metabolismo , Inhibidor 1 de Activador Plasminogénico/uso terapéutico , Síndrome de Dificultad Respiratoria/etiología , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/uso terapéutico
13.
Sci China Life Sci ; 67(2): 286-300, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37897614

RESUMEN

We previously demonstrated that normal high-density lipoprotein (nHDL) can promote angiogenesis, whereas HDL from patients with coronary artery disease (dHDL) is dysfunctional and impairs angiogenesis. Autophagy plays a critical role in angiogenesis, and HDL regulates autophagy. However, it is unclear whether nHDL and dHDL regulate angiogenesis by affecting autophagy. Endothelial cells (ECs) were treated with nHDL and dHDL with or without an autophagy inhibitor. Autophagy, endothelial nitric oxide synthase (eNOS) expression, miRNA expression, nitric oxide (NO) production, superoxide anion (O2•-) generation, EC migration, and tube formation were evaluated. nHDL suppressed the expression of miR-181a-5p, which promotes autophagy and the expression of eNOS, resulting in NO production and the inhibition of O2•- generation, and ultimately increasing in EC migration and tube formation. dHDL showed opposite effects compared to nHDL and ultimately inhibited EC migration and tube formation. We found that autophagy-related protein 5 (ATG5) was a direct target of miR-181a-5p. ATG5 silencing or miR-181a-5p mimic inhibited nHDL-induced autophagy, eNOS expression, NO production, EC migration, tube formation, and enhanced O2•- generation, whereas overexpression of ATG5 or miR-181a-5p inhibitor reversed the above effects of dHDL. ATG5 expression and angiogenesis were decreased in the ischemic lower limbs of hypercholesterolemic low-density lipoprotein receptor null (LDLr-/-) mice when compared to C57BL/6 mice. ATG5 overexpression improved angiogenesis in ischemic hypercholesterolemic LDLr-/- mice. Taken together, nHDL was able to stimulate autophagy by suppressing miR-181a-5p, subsequently increasing eNOS expression, which generated NO and promoted angiogenesis. In contrast, dHDL inhibited angiogenesis, at least partially, by increasing miR-181a-5p expression, which decreased autophagy and eNOS expression, resulting in a decrease in NO production and an increase in O2•- generation. Our findings reveal a novel mechanism by which HDL affects angiogenesis by regulating autophagy and provide a therapeutic target for dHDL-impaired angiogenesis.


Asunto(s)
MicroARNs , Humanos , Ratones , Animales , MicroARNs/metabolismo , Células Endoteliales/metabolismo , Angiogénesis , Ratones Endogámicos C57BL , Autofagia/genética
14.
Front Public Health ; 11: 1289838, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38026392

RESUMEN

Mn (Manganese, Mn) is an essential trace element involved in various biological processes such as the regulation of immune, nervous and digestive system functions. However, excessive Mn exposure can lead to immune damage. Occupational workers in cement and ferroalloy manufacturing and other related industries are exposed to low levels of Mn for a long time. Mn exposure is one of the important occupational hazards, but the research on the effect of Mn on the immune system of the occupational population is not complete, and there is no reliable biomarker. Therefore, this study aimed to evaluate the immunotoxicity of Mn from the soluble immune checkpoint TIM-3 (T-cell immunoglobulin and mucin containing protein 3, TIM-3) and complement C3. A total of 144 Mn-exposed workers were recruited from a bus manufacturing company and a railroad company in Henan Province. An inductively coupled plasma mass spectrometer was used to detect the concentration of RBC Mn (Red blood cell Mn, RBC Mn), and ELISA kits were used to detect serum complement C3 and TIM-3. Finally, the subjects were statistically analyzed by dividing them into low and high Mn groups based on the median RBC Mn concentration. We found that Mn exposure resulted in elevated serum TIM-3 expression and decreased complement C3 expression in workers; that serum TIM-3 and complement C3 expression showed a dose-response relationship with RBC Mn; and that the mediating effect of complement C3 between RBC Mn and TIM-3 was found to be significant. The above findings indicate that this study has a preliminary understanding of the effect of Mn exposure on the immune system of the occupational population exposed to Mn, and complement C3 and TIM-3 may be biomarkers of Mn exposure, which may provide clues for the prevention and control of Mn occupational hazards.


Asunto(s)
Complemento C3 , Receptor 2 Celular del Virus de la Hepatitis A , Humanos , Manganeso/toxicidad , Biomarcadores
15.
Exp Hematol Oncol ; 12(1): 94, 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37946295

RESUMEN

Recurrence is one of the main causes of treatment failure in early-stage non-small cell lung cancer (NSCLC). However, there are no predictors of the recurrence of early-stage NSCLC, and the molecular mechanism of its recurrence is not clear. In this study, we used clinical sample analysis to demonstrate that low levels of expression of precursor surfactant protein B (pro-SFTPB) in primary NSCLC tissue compared to their adjacent tissues are closely correlated with recurrence and poor prognosis in early-stage NSCLC patients. In vitro and in vivo experiments showed that downregulation of pro-SFTPB expression activates the Akt pathway by upregulating PGK1, which promotes metastasis and tumorigenicity in NSCLC cells. We then demonstrated that pro-SFTPB suppresses the formation of the ADRM1/hRpn2/UCH37 complex by binding to ADRM1, which inhibits PGK1 deubiquitination, thus accelerating ubiquitin-mediated PGK1 degradation. In summary, our findings indicate that low expression of pro-SFTPB in primary NSCLC compared to their adjacent tissue has potential as a predictor of recurrence and poor prognosis in early-stage NSCLC. Mechanistically, downregulation of pro-SFTPB attenuates inhibition of ADRM1-deubiquitinated PGK1, resulting in elevated levels of PGK1 protein; this activates the Akt pathway, ultimately leading to the progression of early-stage NSCLC.

16.
Res Sq ; 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38014298

RESUMEN

It is largely unknown how the tongue base and soft palate deform to alter the configuration of the oropharyngeal airway during respiration. This study is to address this important gap. After live sleep monitoring of 5 Yucatan and 2 Panepinto minipigs to verify obstructive sleep apnea (OSA), 8 and 4 ultrasonic crystals were implanted into the tongue base and soft palate to circumscribe a cubic and square region, respectively. The 3D and 2D dimensional changes of the circumscribed regions were measured simultaneously with electromyographic activity (EMG) of the oropharyngeal muscles during spontaneous respiration under sedated sleep. The results indicated that both obese Yucatan and Panepinto minipigs presented spontaneous OSA, but not in 3 non-obese Yucatan minipigs. During inspiration, the tongue base showed elongation in both dorsal and ventral regions but thinning and thickening in the anterior and posterior regions respectively. The widths showed opposite directions, widening in the dorsal but narrowing in the ventral regions. The soft palate expanded in both length and width. Compared to normal controls, obese/OSA ones showed similar directions of dimensional changes, but the magnitude of change was two times larger in the tongue base and soft palate, and obese/OSA Panepinto minipigs presented 10 times larger changes in all dimensions of both the tongue base and the soft palate. The opposite direction of the respiratory spatial relationship between these two structures was seen in obese/OSA as compared to normal minipigs.

17.
Asia Pac J Clin Nutr ; 32(3): 308-320, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37789651

RESUMEN

BACKGROUND AND OBJECTIVES: Emerging expert consensuses and guidelines recommend that omega-3 fatty acids may have anti-inflammatory effects in hospitalized patients with coronavirus disease (COVID-19). However, these recommendations are based on pathophysiological studies of inflammation rather than direct clinical evidence. We conducted this systematic review and meta-analysis to evaluate the efficacy of omega-3 fatty acid supplementation in hospitalized patients with COVID-19. METHODS AND STUDY DESIGN: We retrieved literature from PubMed, Web of Science, Embase, China National Knowledge Infrastructure (CNKI), WANFANG, Chinese Biomedical Literature Database, and Cochrane Library databases up to May 1, 2023. Data from studies comparing omega-3 fatty acids with a placebo or other pharmaceutical nutrients were analyzed. RESULTS: Of 3032 records, 42 full-text articles were reviewed, five eligible studies were identified, and one study was found in the references. In total of six studies involving 273 patients were included, pooled, and analyzed. Compared to the control group, omega-3 fatty acid intervention reduced the overall mortality of hospitalized patients with COVID-19 (RR=0.76; 95% CI, [0.61, 0.93]; p=0.010). No serious or unexpected drug-related adverse events were observed. No statistical significance was observed in inflammatory markers such as CRP (MD=-9.69; 95% CI, [-22.52, 3.15]; p=0.14; I2=97%) and IL-6; however, the neutrophil/lymphocyte ratio was significantly lower in the omega-3 FAs group on day 7 of intervention (p < 0.001). CONCLUSIONS: Omega-3 fatty acid administration may be associated with reduced mortality in hospitalized patients with COVID-19. Given the small sample size of enrolled studies, more rigorous and large-scale trials are urgently needed in the future to verify its efficacy.


Asunto(s)
COVID-19 , Ácidos Grasos Omega-3 , Humanos , Ensayos Clínicos Controlados Aleatorios como Asunto , Ácidos Grasos Omega-3/uso terapéutico , Inflamación/tratamiento farmacológico , China
19.
MedComm (2020) ; 4(6): e413, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37881786

RESUMEN

Epicardial adipose tissue (EAT) is located between the myocardium and visceral pericardium. The unique anatomy and physiology of the EAT determines its great potential in locally influencing adjacent tissues such as the myocardium and coronary arteries. Classified by research methodologies, this study reviews the latest research progress on the role of EAT in cardiovascular diseases (CVDs), particularly in patients with metabolic disorders. Studies based on imaging techniques demonstrated that increased EAT amount in patients with metabolic disorders is associated with higher risk of CVDs and increased mortality. Then, in-depth profiling studies indicate that remodeled EAT may serve as a local mediator of the deleterious effects of cardiometabolic conditions and plays a crucial role in CVDs. Further, in vitro coculture studies provided preliminary evidence that the paracrine effect of remodeled EAT on adjacent cardiomyocytes can promote the occurrence and progression of CVDs. Considering the important role of EAT in CVDs, targeting EAT might be a potential strategy to reduce cardiovascular risks. Several interventions have been proved effective in reducing EAT amount. Our review provides valuable insights of the relationship between EAT, metabolic disorders, and CVDs, as well as an overview of the methodological constructs of EAT-related studies.

20.
Huan Jing Ke Xue ; 44(10): 5410-5417, 2023 Oct 08.
Artículo en Chino | MEDLINE | ID: mdl-37827759

RESUMEN

Based on the offline sampling data of volatile organic compounds (VOCs) and the simultaneous online measurements of conventional gaseous air pollutants and meteorological parameters in urban Huanggang, the volume fractions and component characteristics of VOCs were analyzed. The sources and ozone (O3) formation sensitivity of VOCs during severe ozone pollution episodes were analyzed using the positive matrix factorization (PMF) model and the photochemical box model coupled with master chemical mechanism (PBM-MCM), respectively. The results revealed that the average volume fractions of total volatile organic compounds were (21.57±3.13)×10-9, with higher volume fractions in winter and spring compared to those in summer and autumn. Among these, alkanes (49.9%) and alkenes (16.4%) accounted for the highest proportion. The PMF analysis results showed that fuel combustion (27.8%), vehicle emission (19.9%), solvent use (15.7%), industrial halogenated hydrocarbon emission (12.1%), chemical enterprise emission (10.5%), natural sources (7.8%), and diesel vehicle emission (6.2%) were the main sources of VOC emissions. Anthropogenic VOCs emitted by solvent use, fuel combustion, and chemical enterprises contributed significantly (60.9% in total) to generating O3, which indicates that these three types of anthropogenic sources should be controlled first when it comes to preventing and controlling ozone pollution. Further, the relative incremental reactivity (RIR) and empirical kinetic method approach (EKMA) revealed that O3 formation was in a VOCs-limited regime during the observation period in Huanggang, China. Furthermore, O3 formation was more sensitive to m-xylene, p-xylene, ethylene, 1-butene, and toluene; therefore, reducing these VOCs should be prioritized.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...