Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Viruses ; 16(1)2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38257776

RESUMEN

The first- and second-generation clinically used HIV-1 integrase (IN) strand transfer inhibitors (INSTIs) are key components of antiretroviral therapy (ART), which work by blocking the integration step in the HIV-1 replication cycle that is catalyzed by a nucleoprotein assembly called an intasome. However, resistance to even the latest clinically used INSTIs is beginning to emerge. Developmental third-generation INSTIs, based on naphthyridine scaffolds, are promising candidates to combat drug-resistant viral variants. Among these novel INSTIs, compound 4f exhibits two distinct conformations when binding with intasomes from HIV-1 and the closely related prototype foamy virus (PFV) despite the high structural similarity of their INSTI binding pockets. The molecular mechanism and the key active site residues responsible for these differing binding modes in closely related intasomes remain elusive. To unravel the molecular determinants governing the two distinct binding modes, we applied a novel molecular dynamics-based free energy method that utilizes alchemical pathways to overcome the sampling challenges associated with transitioning between the two bound conformations of ligand 4f within the crowded environments of the INSTI binding pockets in these intasomes. The calculated conformational free energies successfully recapitulate the experimentally observed binding mode preferences in the two viral intasomes. Analysis of the simulated structures suggests that the observed binding mode preferences are caused by amino acid residue differences in both the front and the central catalytic sub-pocket of the INSTI binding site in HIV-1 and PFV. Additional free energy calculations on mutants of HIV-1 and PFV revealed that while both sub-pockets contribute to binding mode selection, the central sub-pocket plays a more important role. These results highlight the importance of both side chain and solvent reorganization, as well as the conformational entropy in determining the ligand binding mode, and will help inform the development of more effective INSTIs for combatting drug-resistant viral variants.


Asunto(s)
Integrasa de VIH , Seropositividad para VIH , VIH-1 , Humanos , Ligandos , Sitios de Unión , Catálisis , Integrasa de VIH/genética , VIH-1/genética
2.
bioRxiv ; 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38077045

RESUMEN

The first and second-generation clinically used HIV-1 integrase (IN) strand transfer inhibitors (INSTIs) are key components of antiretroviral therapy (ART), which work by blocking the integration step in the HIV-1 replication cycle that is catalyzed by a nucleoprotein assembly called an intasome. However, resistance to even the latest clinically used INSTIs is beginning to emerge. Developmental third-generation INSTIs, based on naphthyridine scaffold, are promising candidates to combat drug-resistant viral variants. Among these novel INSTIs, compound 4f exhibits two distinct conformations when binding to intasomes from HIV-1 and the closely related prototype foamy virus (PFV), despite the high structural similarity of their INSTI binding pockets. The molecular mechanism and the key active site residues responsible for these differing binding modes in closely related intasomes remain elusive. To unravel the molecular determinants governing the two distinct binding modes, we employ a novel molecular dynamics-based free energy approach that utilizes alchemical pathways to overcome the sampling challenges associated with transitioning between two ligand conformations within crowded environments along physical pathways. The calculated conformational free energies successfully recapitulate the experimentally observed binding mode preferences in the two viral intasomes. Analysis of the simulated structures suggests that the observed binding mode preferences are caused by amino acid residue differences in both the front and the central catalytic sub-pocket of the INSTI binding site in HIV-1 and PFV. Additional free energy calculations on mutants of HIV-1 and PFV revealed that while both sub-pockets contribute to the binding mode selection, the central sub-pocket plays a more important role. These results highlight the importance of both side chain and solvent reorganization, as well as the conformational entropy in determining the ligand binding mode and will help inform the development of more effective INSTIs for combatting drug-resistant viral variants.

3.
Sci Adv ; 9(29): eadg5953, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37478179

RESUMEN

HIV-1 infection depends on the integration of viral DNA into host chromatin. Integration is mediated by the viral enzyme integrase and is blocked by integrase strand transfer inhibitors (INSTIs), first-line antiretroviral therapeutics widely used in the clinic. Resistance to even the best INSTIs is a problem, and the mechanisms of resistance are poorly understood. Here, we analyze combinations of the mutations E138K, G140A/S, and Q148H/K/R, which confer resistance to INSTIs. The investigational drug 4d more effectively inhibited the mutants compared with the approved drug Dolutegravir (DTG). We present 11 new cryo-EM structures of drug-resistant HIV-1 intasomes bound to DTG or 4d, with better than 3-Å resolution. These structures, complemented with free energy simulations, virology, and enzymology, explain the mechanisms of DTG resistance involving E138K + G140A/S + Q148H/K/R and show why 4d maintains potency better than DTG. These data establish a foundation for further development of INSTIs that potently inhibit resistant forms in integrase.


Asunto(s)
Inhibidores de Integrasa VIH , Integrasa de VIH , Inhibidores de Integrasa VIH/farmacología , Inhibidores de Integrasa VIH/química , Oxazinas/farmacología , Mutación , Integrasa de VIH/genética , Integrasa de VIH/química , Integrasa de VIH/metabolismo
4.
J Comput Aided Mol Des ; 36(3): 193-203, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35262811

RESUMEN

We have identified novel HIV-1 capsid inhibitors targeting the PF74 binding site. Acting as the building block of the HIV-1 capsid core, the HIV-1 capsid protein plays an important role in the viral life cycle and is an attractive target for antiviral development. A structure-based virtual screening workflow for hit identification was employed, which includes docking 1.6 million commercially-available drug-like compounds from the ZINC database to the capsid dimer, followed by applying two absolute binding free energy (ABFE) filters on the 500 top-ranked molecules from docking. The first employs the Binding Energy Distribution Analysis Method (BEDAM) in implicit solvent. The top-ranked compounds are then refined using the Double Decoupling method in explicit solvent. Both docking and BEDAM refinement were carried out on the IBM World Community Grid as part of the FightAIDS@Home project. Using this virtual screening workflow, we identified 24 molecules with calculated binding free energies between - 6 and - 12 kcal/mol. We performed thermal shift assays on these molecules to examine their potential effects on the stability of HIV-1 capsid hexamer and found that two compounds, ZINC520357473 and ZINC4119064 increased the melting point of the latter by 14.8 °C and 33 °C, respectively. These results support the conclusion that the two ZINC compounds are primary hits targeting the capsid dimer interface. Our simulations also suggest that the two hit molecules may bind at the capsid dimer interface by occupying a new sub-pocket that has not been exploited by existing CA inhibitors. The possible causes for why other top-scored compounds suggested by ABFE filters failed to show measurable activity are discussed.


Asunto(s)
Fármacos Anti-VIH , VIH-1 , Fármacos Anti-VIH/química , Fármacos Anti-VIH/farmacología , Cápside/metabolismo , Proteínas de la Cápside/metabolismo , Proteínas de la Cápside/farmacología , Simulación del Acoplamiento Molecular , Unión Proteica , Solventes , Flujo de Trabajo
5.
Phys Chem Chem Phys ; 24(10): 6037-6052, 2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35212338

RESUMEN

Understanding the physical forces underlying receptor-ligand binding requires robust methods for analyzing the binding thermodynamics. In end-point binding free energy methods the binding free energy is naturally decomposable into physically intuitive contributions such as the solvation free energy and configurational entropy that can provide insights. Here we present a new end-point method called EE-BQH (Effective Energy-Boltzmann-Quasiharmonic) which combines the Boltzmann-Quasiharmonic model for configurational entropy with different solvation free energy methods, such as the continuum solvent PBSA model and the integral equation-based 3D-RISM, to estimate the absolute binding free energy. We compare EE-BQH with other treatments of configurational entropy such as Quasiharmonic models in internal coordinates (QHIC) and in Cartesian coordinates (QHCC), and Normal Mode analysis (NMA), by testing them on the octa acids host-guest complexes from the SAMPL8 blind challenge. The accuracies in the calculated absolute binding free energies strongly depend on the configurational entropy and solvation free energy methods used. QHIC and BQH yield the best agreements with the established potential of mean force (PMF) estimates, with R2 of ∼0.7 and mean unsigned error of ∼1.7 kcal mol-1. These results from the end-point calculations are also in similar agreement with experiments. While 3D-RISM in combination with QHIC or BQH lead to reasonable correlations with the PMF results and experiments, the calculated absolute binding free energies are underestimated by ∼5 kcal mol-1. While the binding is accompanied by a significant reduction in the ligand translational/rotational entropy, the change in the torsional entropy in these host-guest systems is slightly positive. Compared with BQH, QHIC underestimates the reduction of configurational entropy because of the non-Gaussian probability distributions in the ligand rotation and a small number of torsions. The study highlights the crucial role of configurational entropy in determining binding and demonstrates the potential of using the new end-point method to provide insights in more complex protein-ligand systems.


Asunto(s)
Simulación de Dinámica Molecular , Entropía , Ligandos , Unión Proteica , Termodinámica
6.
J Comput Aided Mol Des ; 36(1): 63-76, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35059940

RESUMEN

We report the results of our participation in the SAMPL8 GDCC Blind Challenge for host-guest binding affinity predictions. Absolute binding affinity prediction is of central importance to the biophysics of molecular association and pharmaceutical discovery. The blinded SAMPL series have provided an important forum for assessing the reliability of binding free energy methods in an objective way. In this challenge, we employed two binding free energy methods, the newly developed alchemical transfer method (ATM) and the well-established potential of mean force (PMF) physical pathway method, using the same setup and force field model. The calculated binding free energies from the two methods are in excellent quantitative agreement. Importantly, the results from the two methods were also found to agree well with the experimental binding affinities released subsequently, with R values of 0.89 (ATM) and 0.83 (PMF). These results were ranked among the best of the SAMPL8 GDCC challenge and second only to those obtained with the more accurate AMOEBA force field. Interestingly, the two host molecules included in the challenge (TEMOA and TEETOA) displayed distinct binding mechanisms, with TEMOA undergoing a dehydration transition whereas guest binding to TEETOA resulted in the opening of the binding cavity that remains essentially dry during the process. The coupled reorganization and hydration equilibria observed in these systems is a useful prototype for the study of these phenomena often observed in the formation of protein-ligand complexes. Given that the two free energy methods employed here are based on entirely different thermodynamic pathways, the close agreement between the two and their general agreement with the experimental binding free energies are a testament to the high quality and precision achieved by theory and methods. The study provides further validation of the novel ATM binding free energy estimation protocol and paves the way to further extensions of the method to more complex systems.


Asunto(s)
Simulación de Dinámica Molecular , Proteínas , Ligandos , Unión Proteica , Proteínas/química , Reproducibilidad de los Resultados , Termodinámica
7.
Int J Mol Sci ; 22(19)2021 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-34639142

RESUMEN

G-quadruplexes are four-stranded nucleic acid secondary structures of biological significance and have emerged as an attractive drug target. The G4 formed in the MYC promoter (MycG4) is one of the most studied small-molecule targets, and a model system for parallel structures that are prevalent in promoter DNA G4s and RNA G4s. Molecular docking has become an essential tool in structure-based drug discovery for protein targets, and is also increasingly applied to G4 DNA. However, DNA, and in particular G4, binding sites differ significantly from protein targets. Here we perform the first systematic evaluation of four commonly used docking programs (AutoDock Vina, DOCK 6, Glide, and RxDock) for G4 DNA-ligand binding pose prediction using four small molecules whose complex structures with the MycG4 have been experimentally determined in solution. The results indicate that there are considerable differences in the performance of the docking programs and that DOCK 6 with GB/SA rescoring performs better than the other programs. We found that docking accuracy is mainly limited by the scoring functions. The study shows that current docking programs should be used with caution to predict G4 DNA-small molecule binding modes.


Asunto(s)
ADN/metabolismo , G-Cuádruplex , Simulación del Acoplamiento Molecular , Proteínas Proto-Oncogénicas c-myc/metabolismo , Bibliotecas de Moléculas Pequeñas/metabolismo , Programas Informáticos , Sitios de Unión , ADN/química , ADN/genética , Humanos , Ligandos , Proteínas Proto-Oncogénicas c-myc/genética
8.
Viruses ; 13(5)2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-34063519

RESUMEN

While drug resistance mutations can often be attributed to the loss of direct or solvent-mediated protein-ligand interactions in the drug-mutant complex, in this study we show that a resistance mutation for the picomolar HIV-1 capsid (CA)-targeting antiviral (GS-6207) is mainly due to the free energy cost of the drug-induced protein side chain reorganization in the mutant protein. Among several mutations, M66I causes the most suppression of the GS-6207 antiviral activity (up to ~84,000-fold), and only 83- and 68-fold reductions for PF74 and ZW-1261, respectively. To understand the molecular basis of this drug resistance, we conducted molecular dynamics free energy simulations to study the structures, energetics, and conformational free energy landscapes involved in the inhibitors binding at the interface of two CA monomers. To minimize the protein-ligand steric clash, the I66 side chain in the M66I-GS-6207 complex switches to a higher free energy conformation from the one adopted in the apo M66I. In contrast, the binding of GS-6207 to the wild-type CA does not lead to any significant M66 conformational change. Based on an analysis that decomposes the absolute binding free energy into contributions from two receptor conformational states, it appears that it is the free energy cost of side chain reorganization rather than the reduced protein-ligand interaction that is largely responsible for the drug resistance against GS-6207.


Asunto(s)
Proteínas de la Cápside/genética , Cápside/efectos de los fármacos , Farmacorresistencia Viral/genética , VIH-1/genética , Simulación de Dinámica Molecular , Mutación , Fármacos Anti-VIH/metabolismo , Fármacos Anti-VIH/farmacología , Sitios de Unión , Cápside/química , Cápside/metabolismo , Proteínas de la Cápside/metabolismo , Humanos , Ligandos , Unión Proteica , Conformación Proteica
9.
J Chem Theory Comput ; 17(6): 3309-3319, 2021 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-33983730

RESUMEN

The alchemical transfer method (ATM) for the calculation of standard binding free energies of noncovalent molecular complexes is presented. The method is based on a coordinate displacement perturbation of the ligand between the receptor binding site and the explicit solvent bulk and a thermodynamic cycle connected by a symmetric intermediate in which the ligand interacts with the receptor and solvent environments with equal strength. While the approach is alchemical, the implementation of the ATM is as straightforward as that for physical pathway methods of binding. The method is applicable, in principle, with any force field, as it does not require splitting the alchemical transformations into electrostatic and nonelectrostatic steps, and it does not require soft-core pair potentials. We have implemented the ATM as a freely available and open-source plugin of the OpenMM molecular dynamics library. The method and its implementation are validated on the SAMPL6 SAMPLing host-guest benchmark set. The work paves the way to streamlined alchemical relative and absolute binding free energy implementations on many molecular simulation packages and with arbitrary energy functions including polarizable, quantum-mechanical, and artificial neural network potentials.

10.
J Chem Theory Comput ; 17(5): 2714-2724, 2021 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-33830762

RESUMEN

Grid Inhomogeneous Solvation Theory (GIST) maps out solvation thermodynamic properties on a fine meshed grid and provides a statistical mechanical formalism for thermodynamic end-state calculations. However, differences in how long-range nonbonded interactions are calculated in molecular dynamics engines and in the current implementation of GIST have prevented precise comparisons between free energies estimated using GIST and those from other free energy methods such as thermodynamic integration (TI). Here, we address this by presenting PME-GIST, a formalism by which particle mesh Ewald (PME)-based electrostatic energies and long-range Lennard-Jones (LJ) energies are decomposed and assigned to individual atoms and the corresponding voxels they occupy in a manner consistent with the GIST approach. PME-GIST yields potential energy calculations that are precisely consistent with modern simulation engines and performs these calculations at a dramatically faster speed than prior implementations. Here, we apply PME-GIST end-state analyses to 32 small molecules whose solvation free energies are close to evenly distributed from 2 kcal/mol to -17 kcal/mol and obtain solvation energies consistent with TI calculations (R2 = 0.99, mean unsigned difference 0.8 kcal/mol). We also estimate the entropy contribution from the second and higher order entropy terms that are truncated in GIST by the differences between entropies calculated in TI and GIST. With a simple correction for the high order entropy terms, PME-GIST obtains solvation free energies that are highly consistent with TI calculations (R2 = 0.99, mean unsigned difference = 0.4 kcal/mol) and experimental results (R2 = 0.88, mean unsigned difference = 1.4 kcal/mol). The precision of PME-GIST also enables us to show that the solvation free energy of small hydrophobic and hydrophilic molecules can be largely understood based on perturbations of the solvent in a region extending a few solvation shells from the solute. We have integrated PME-GIST into the open-source molecular dynamics analysis software CPPTRAJ.

11.
Protein Sci ; 30(2): 438-447, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33244804

RESUMEN

Targeting protein-protein interactions for therapeutic development involves designing small molecules to either disrupt or enhance a known PPI. For this purpose, it is necessary to compute reliably the effect of chemical modifications of small molecules on the protein-protein association free energy. Here we present results obtained using a novel thermodynamic free energy cycle, for the rational design of allosteric inhibitors of HIV-1 integrase (ALLINI) that act specifically in the early stage of the infection cycle. The new compounds can serve as molecular probes to dissect the multifunctional mechanisms of ALLINIs to inform the discovery of new allosteric inhibitors. The free energy protocol developed here can be more broadly applied to study quantitatively the effects of small molecules on modulating the strengths of protein-protein interactions.


Asunto(s)
Inhibidores de Integrasa VIH/química , Integrasa de VIH/química , VIH-1/enzimología , Simulación de Dinámica Molecular , Regulación Alostérica , Humanos , Termodinámica
12.
Biophys J ; 119(6): 1226-1238, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32877664

RESUMEN

We report the free-energy landscape and thermodynamics of the protein-protein association responsible for the drug-induced multimerization of HIV-1 integrase (IN). Allosteric HIV-1 integrase inhibitors promote aberrant IN multimerization by bridging IN-IN intermolecular interactions. However, the thermodynamic driving forces and kinetics of the multimerization remain largely unknown. Here, we explore the early steps in the IN multimerization by using umbrella sampling and unbiased molecular dynamics simulations in explicit solvent. In direct simulations, the two initially separated dimers spontaneously associate to form near-native complexes that resemble the crystal structure of the aberrant tetramer. Most strikingly, the effective interaction of the protein-protein association is very short-ranged: the two dimers associate rapidly within tens of nanoseconds when their binding surfaces are separated by d ≤ 4.3 Å (less than two water diameters). Beyond this distance, the oligomerization kinetics appears to be diffusion controlled with a much longer association time. The free-energy profile also captured the crucial role of allosteric IN inhibitors in promoting multimerization and explained why several C-terminal domain mutations are remarkably resistant to the drug-induced multimerization. The results also show that at small separation, the protein-protein binding process contains two consecutive phases with distinct thermodynamic signatures. First, interprotein water molecules are expelled to the bulk, resulting in a small increase in entropy, as the solvent entropy gain from the water release is nearly cancelled by the loss of side-chain entropies as the two proteins approach each other. At shorter distances, the two dry binding surfaces adapt to each other to optimize their interaction energy at the expense of further protein configurational entropy loss. Although the binding interfaces feature clusters of hydrophobic residues, overall, the protein-protein association in this system is driven by enthalpy and opposed by entropy.


Asunto(s)
Simulación de Dinámica Molecular , Proteínas , Entropía , Unión Proteica , Termodinámica
13.
J Chem Theory Comput ; 16(4): 2803-2813, 2020 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-32101691

RESUMEN

We present a new approach to more accurately and efficiently compute the absolute binding free energy for receptor-ligand complexes. Currently, the double decoupling method (DDM) and the potential of mean force method (PMF) are widely used to compute the absolute binding free energy of biomolecular complexes. DDM relies on alchemically decoupling the ligand from its environments, which can be computationally challenging for large ligands and charged ligands because of the large magnitude of the decoupling free energies involved. In contrast, the PMF method uses a physical pathway to directly transfer the ligand from solution to the receptor binding pocket and thus avoids some of the aforementioned problems in DDM. However, the PMF method has its own drawbacks: because of its reliance on a ligand binding/unbinding pathway that is free of steric obstructions from the receptor atoms, the method has difficulty treating ligands with buried atoms. To overcome the limitation in the standard PMF approach and enable buried ligands to be treated, here we develop a new method called AlchemPMF in which steric obstructions along the physical pathway for binding are alchemically removed. We have tested the new approach on two important drug targets involving charged ligands. One is HIV-1 integrase bound to an allosteric inhibitor; the other is the human telomeric DNA G-quadruplex in complex with a natural product protoberberine buried in the binding pocket. For both systems, the new approach leads to more reliable estimates of absolute binding free energies with smaller error bars and closer agreements with experiments compared with those obtained from the existing methods, demonstrating the effectiveness of the new method in overcoming the hysteresis often encountered in PMF binding free energy calculations of such systems. The new approach could also be used to improve the sampling of water equilibration and resolvation of the binding pocket as the ligand is extracted.


Asunto(s)
G-Cuádruplex , Integrasa de VIH/química , Sitios de Unión , Entropía , Ligandos , Simulación de Dinámica Molecular , Termodinámica
14.
J Comput Chem ; 41(1): 56-68, 2020 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-31621932

RESUMEN

We propose a free energy calculation method for receptor-ligand binding, which have multiple binding poses that avoids exhaustive enumeration of the poses. For systems with multiple binding poses, the standard procedure is to enumerate orientations of the binding poses, restrain the ligand to each orientation, and then, calculate the binding free energies for each binding pose. In this study, we modify a part of the thermodynamic cycle in order to sample a broader conformational space of the ligand in the binding site. This modification leads to more accurate free energy calculation without performing separate free energy simulations for each binding pose. We applied our modification to simple model host-guest systems as a test, which have only two binding poses, by using a single decoupling method (SDM) in implicit solvent. The results showed that the binding free energies obtained from our method without knowing the two binding poses were in good agreement with the benchmark results obtained by explicit enumeration of the binding poses. Our method is applicable to other alchemical binding free energy calculation methods such as the double decoupling method (DDM) in explicit solvent. We performed a calculation for a protein-ligand system with explicit solvent using our modified thermodynamic path. The results of the free energy simulation along our modified path were in good agreement with the results of conventional DDM, which requires a separate binding free energy calculation for each of the binding poses of the example of phenol binding to T4 lysozyme in explicit solvent. © 2019 Wiley Periodicals, Inc.


Asunto(s)
Simulación de Dinámica Molecular , Muramidasa/química , Fenoles/química , Termodinámica , Sitios de Unión , Ligandos , Muramidasa/metabolismo
15.
Methods Mol Biol ; 2035: 177-199, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31444750

RESUMEN

We provide a practical guide for using molecular dynamics simulation to compute the binding affinity of small molecules in complex with G-quadruplex DNA. Such calculations have a number of applications, such as rescoring docking results and validating docked poses, to inform the discovery of G-quadruplex binders with high affinity and selectivity. This chapter describes two binding free energy protocols: the double decoupling method (DDM) and the potential of mean force method (PMF). We illustrate the application of the two methods using a recent case study of the binding of quindoline with the c-MYC G-quadruplex DNA. For this system, the two methods yield absolute binding free energies within ~2 kcal/mol of the experimental value. We discuss the advantages and disadvantages of these binding free energy methods.


Asunto(s)
Alcaloides/química , G-Cuádruplex , Indoles/química , Quinolinas/química , Simulación de Dinámica Molecular , Termodinámica
16.
J Am Chem Soc ; 141(28): 11059-11070, 2019 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-31283877

RESUMEN

MYC is one of the most important oncogenes and is overexpressed in the majority of cancers. G-Quadruplexes are noncanonical four-stranded DNA secondary structures that have emerged as attractive cancer-specific molecular targets for drug development. The G-quadruplex formed in the proximal promoter region of the MYC oncogene (MycG4) has been shown to be a transcriptional silencer that is amenable to small-molecule targeting for MYC suppression. Indenoisoquinolines are human topoisomerase I inhibitors in clinical testing with improved physicochemical and biological properties as compared to the clinically used camptothecin anticancer drugs topotecan and irinotecan. However, some indenoisoquinolines with potent anticancer activity do not exhibit strong topoisomerase I inhibition, suggesting a separate mechanism of action. Here, we report that anticancer indenoisoquinolines strongly bind and stabilize MycG4 and lower MYC expression levels in cancer cells, using various biochemical, biophysical, computer modeling, and cell-based methods. Significantly, a large number of active indenoisoquinolines cause strong MYC downregulation in cancer cells. Structure-activity relationships of MycG4 recognition by indenoisoquinolines are investigated. In addition, the analysis of indenoisoquinoline analogues for their MYC-inhibitory activity, topoisomerase I-inhibitory activity, and anticancer activity reveals a synergistic effect of MYC inhibition and topoisomerase I inhibition on anticancer activity. Therefore, this study uncovers a novel mechanism of action of indenoisoquinolines as a new family of drugs targeting the MYC promoter G-quadruplex for MYC suppression. Furthermore, the study suggests that dual targeting of MYC and topoisomerase I may serve as a novel strategy for anticancer drug development.


Asunto(s)
ADN-Topoisomerasas de Tipo I/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Indenos/farmacología , Isoquinolinas/farmacología , Proteínas Proto-Oncogénicas c-myc/antagonistas & inhibidores , Inhibidores de Topoisomerasa I/farmacología , Sitios de Unión/efectos de los fármacos , G-Cuádruplex/efectos de los fármacos , Humanos , Indenos/química , Isoquinolinas/química , Estructura Molecular , Regiones Promotoras Genéticas/efectos de los fármacos , Regiones Promotoras Genéticas/genética , Estabilidad Proteica/efectos de los fármacos , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Relación Estructura-Actividad , Inhibidores de Topoisomerasa I/química
17.
Elife ; 82019 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-31120420

RESUMEN

Allosteric HIV-1 integrase (IN) inhibitors (ALLINIs) are a promising new class of antiretroviral agents that disrupt proper viral maturation by inducing hyper-multimerization of IN. Here we show that lead pyridine-based ALLINI KF116 exhibits striking selectivity for IN tetramers versus lower order protein oligomers. IN structural features that are essential for its functional tetramerization and HIV-1 replication are also critically important for KF116 mediated higher-order IN multimerization. Live cell imaging of single viral particles revealed that KF116 treatment during virion production compromises the tight association of IN with capsid cores during subsequent infection of target cells. We have synthesized the highly active (-)-KF116 enantiomer, which displayed EC50 of ~7 nM against wild type HIV-1 and ~10 fold higher, sub-nM activity against a clinically relevant dolutegravir resistant mutant virus suggesting potential clinical benefits for complementing dolutegravir therapy with pyridine-based ALLINIs.


HIV-1 inserts its genetic code into human genomes, turning healthy cells into virus factories. To do this, the virus uses an enzyme called integrase. Front-line treatments against HIV-1 called "integrase strand-transfer inhibitors" stop this enzyme from working. These inhibitors have helped to revolutionize the treatment of HIV/AIDS by protecting the cells from new infections. But, the emergence of drug resistance remains a serious problem. As the virus evolves, it changes the shape of its integrase protein, substantially reducing the effectiveness of the current therapies. One way to overcome this problem is to develop other therapies that can kill the drug resistant viruses by targeting different parts of the integrase protein. It should be much harder for the virus to evolve the right combination of changes to escape two or more treatments at once. A promising class of new compounds are "allosteric integrase inhibitors". These chemical compounds target a part of the integrase enzyme that the other treatments do not yet reach. Rather than stopping the integrase enzyme from inserting the viral code into the human genome, the new inhibitors make integrase proteins clump together and prevent the formation of infectious viruses. At the moment, these compounds are still experimental. Before they are ready for use in people, researchers need to better understand how they work, and there are several open questions to answer. Integrase proteins work in groups of four and it is not clear how the new compounds make the integrases form large clumps, or what this does to the virus. Understanding this should allow scientists to develop improved versions of the drugs. To answer these questions, Koneru et al. first examined two of the new compounds. A combination of molecular analysis and computer modelling revealed how they work. The compounds link many separate groups of four integrases with each other to form larger and larger clumps, essentially a snowball effect. Live images of infected cells showed that the clumps of integrase get stuck outside of the virus's protective casing. This leaves them exposed, allowing the cell to destroy the integrase enzymes. Koneru et al. also made a new compound, called (-)-KF116. Not only was this compound able to tackle normal HIV-1, it could block viruses resistant to the other type of integrase treatment. In fact, in laboratory tests, it was 10 times more powerful against these resistant viruses. Together, these findings help to explain how allosteric integrase inhibitors work, taking scientists a step closer to bringing them into the clinic. In the future, new versions of the compounds, like (-)-KF116, could help to tackle drug resistance in HIV-1.


Asunto(s)
Antivirales/farmacología , Inhibidores de Integrasa VIH/farmacología , Integrasa de VIH/metabolismo , Multimerización de Proteína , Piridinas/farmacología , Regulación Alostérica/efectos de los fármacos , Antivirales/química , Células HEK293 , Integrasa de VIH/química , Inhibidores de Integrasa VIH/química , Células HeLa , Humanos , Modelos Moleculares , Dominios Proteicos , Piridinas/química , Estereoisomerismo
18.
Molecules ; 24(8)2019 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-31010072

RESUMEN

The human telomeric G-quadruplex (G4) is an attractive target for developing anticancer drugs. Natural products protoberberine alkaloids are known to bind human telomeric G4 and inhibit telomerase. Among several structurally similar protoberberine alkaloids, epiberberine (EPI) shows the greatest specificity in recognizing the human telomeric G4 over duplex DNA and other G4s. Recently, NMR study revealed that EPI recognizes specifically the hybrid-2 form human telomeric G4 by inducing large rearrangements in the 5'-flanking segment and loop regions to form a highly extensive four-layered binding pocket. Using the NMR structure of the EPI-human telomeric G4 complex, here we perform molecular dynamics free energy calculations to elucidate the ligand selectivity in the recognition of protoberberines by the human telomeric G4. The MM-PB(GB)SA (molecular mechanics-Poisson Boltzmann/Generalized Born) Surface Area) binding free energies calculated using the Amber force fields bsc0 and OL15 correlate well with the NMR titration and binding affinity measurements, with both calculations correctly identifying the EPI as the strongest binder to the hybrid-2 telomeric G4 wtTel26. The results demonstrated that accounting for the conformational flexibility of the DNA-ligand complexes is crucially important for explaining the ligand selectivity of the human telomeric G4. While the MD-simulated (molecular dynamics) structures of the G-quadruplex-alkaloid complexes help rationalize why the EPI-G4 interactions are optimal compared with the other protoberberines, structural deviations from the NMR structure near the binding site are observed in the MD simulations. We have also performed binding free energy calculation using the more rigorous double decoupling method (DDM); however, the results correlate less well with the experimental trend, likely due to the difficulty of adequately sampling the very large conformational reorganization in the G4 induced by the protoberberine binding.


Asunto(s)
Alcaloides de Berberina/química , G-Cuádruplex/efectos de los fármacos , Telómero/química , Sitios de Unión , Fluorescencia , Humanos , Enlace de Hidrógeno , Ligandos , Espectroscopía de Resonancia Magnética , Simulación de Dinámica Molecular , Estructura Molecular , Relación Estructura-Actividad , Termodinámica
19.
Phys Chem Chem Phys ; 20(25): 17081-17092, 2018 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-29896599

RESUMEN

Accurately predicting absolute binding free energies of protein-ligand complexes is important as a fundamental problem in both computational biophysics and pharmaceutical discovery. Calculating binding free energies for charged ligands is generally considered to be challenging because of the strong electrostatic interactions between the ligand and its environment in aqueous solution. In this work, we compare the performance of the potential of mean force (PMF) method and the double decoupling method (DDM) for computing absolute binding free energies for charged ligands. We first clarify an unresolved issue concerning the explicit use of the binding site volume to define the complexed state in DDM together with the use of harmonic restraints. We also provide an alternative derivation for the formula for absolute binding free energy using the PMF approach. We use these formulas to compute the binding free energy of charged ligands at an allosteric site of HIV-1 integrase, which has emerged in recent years as a promising target for developing antiviral therapy. As compared with the experimental results, the absolute binding free energies obtained by using the PMF approach show unsigned errors of 1.5-3.4 kcal mol-1, which are somewhat better than the results from DDM (unsigned errors of 1.6-4.3 kcal mol-1) using the same amount of CPU time. According to the DDM decomposition of the binding free energy, the ligand binding appears to be dominated by nonpolar interactions despite the presence of very large and favorable intermolecular ligand-receptor electrostatic interactions, which are almost completely cancelled out by the equally large free energy cost of desolvation of the charged moiety of the ligands in solution. We discuss the relative strengths of computing absolute binding free energies using the alchemical and physical pathway methods.

20.
J Phys Chem B ; 121(46): 10484-10497, 2017 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-29086571

RESUMEN

We report the absolute binding free energy calculation and surface plasmon resonance (SPR) experiment for ligand binding with the c-MYC G-quadruplex DNA. The unimolecular parallel DNA G-quadruplex formed in nuclease hypersensitivity element III1 of the c-MYC gene promoter regulates the c-MYC transcription and is recognized as an emerging drug target for cancer therapy. Quindoline derivatives have been shown to stabilize the G-quadruplex and inhibit the c-MYC expression in cancer cells. NMR revealed two binding sites located at the 5' and 3' termini of the G-quadruplex. Questions about which site is more favored and the basis for the ligand-induced binding site formation remain unresolved. Here, we employ two absolute binding free energy methods, the double decoupling and the potential of mean force methods, to dissect the ligand-binding specificity in the c-MYC G-quadruplex. The calculated absolute binding free energies are in general agreement with the SPR result and suggest that quindoline has a slight preference for the 5' site. The flanking residues around the two sites undergo significant reorganization as the ligand unbinds, which provides evidence for ligand-induced binding pocket formation. The results help interpret experimental data and inform rational design of small molecules targeting the c-MYC G-quadruplex.


Asunto(s)
ADN/química , G-Cuádruplex , Simulación de Dinámica Molecular , Proteínas Proto-Oncogénicas c-myc/química , Resonancia por Plasmón de Superficie , Termodinámica , Sitios de Unión , Ligandos , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...