Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Elife ; 122024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38345852

RESUMEN

Abnormal cellular and circuit excitability is believed to drive many core phenotypes in fragile X syndrome (FXS). The dentate gyrus is a brain area performing critical computations essential for learning and memory. However, little is known about dentate circuit defects and their mechanisms in FXS. Understanding dentate circuit dysfunction in FXS has been complicated by the presence of two types of excitatory neurons, the granule cells and mossy cells. Here we report that loss of FMRP markedly decreased excitability of dentate mossy cells, a change opposite to all other known excitability defects in excitatory neurons in FXS. This mossy cell hypo-excitability is caused by increased Kv7 function in Fmr1 knockout (KO) mice. By reducing the excitatory drive onto local hilar interneurons, hypo-excitability of mossy cells results in increased excitation/inhibition ratio in granule cells and thus paradoxically leads to excessive dentate output. Circuit-wide inhibition of Kv7 channels in Fmr1 KO mice increases inhibitory drive onto granule cells and normalizes the dentate output in response to physiologically relevant theta-gamma coupling stimulation. Our study suggests that circuit-based interventions may provide a promising strategy in this disorder to bypass irreconcilable excitability defects in different cell types and restore their pathophysiological consequences at the circuit level.


Asunto(s)
Síndrome del Cromosoma X Frágil , Trastornos Mentales , Ratones , Animales , Neuronas/fisiología , Interneuronas/metabolismo , Modelos Animales de Enfermedad , Giro Dentado/fisiología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo
2.
bioRxiv ; 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37808793

RESUMEN

Abnormal cellular and circuit excitability is believed to drive many core phenotypes in fragile X syndrome (FXS). The dentate gyrus is a brain area performing critical computations essential for learning and memory. However, little is known about dentate circuit defects and their mechanisms in FXS. Understanding dentate circuit dysfunction in FXS has been complicated by the presence of two types of excitatory neurons, the granule cells and mossy cells. Here we report that loss of FMRP markedly decreased excitability of dentate mossy cells, a change opposite to all other known excitability defects in excitatory neurons in FXS. This mossy cell hypo-excitability is caused by increased Kv7 function in Fmr1 KO mice. By reducing the excitatory drive onto local hilar interneurons, hypo-excitability of mossy cells results in increased excitation/inhibition ratio in granule cells and thus paradoxically leads to excessive dentate output. Circuit-wide inhibition of Kv7 channels in Fmr1 KO mice increases inhibitory drive onto granule cells and normalizes the dentate output in response to physiologically relevant theta-gamma coupling stimulation. Our study suggests that circuit-based interventions may provide a promising strategy in this disorder to bypass irreconcilable excitability defects in different cell types and restore their pathophysiological consequences at the circuit level.

3.
Cell Rep ; 39(7): 110820, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35584668

RESUMEN

Fragile X syndrome, the most common inherited form of intellectual disability, is caused by loss of fragile X mental retardation protein (FMRP). GABAergic system dysfunction is one of the hallmarks of FXS, yet the underlying mechanisms remain poorly understood. Here, we report that FMRP interacts with GABAA receptor (GABAAR) and modulates its single-channel activity. Specifically, FMRP regulates spontaneous GABAAR opening through modulating its single-channel conductance and open probability in dentate granule cells. FMRP loss reduces spontaneous GABAAR activity underlying tonic inhibition, while N-terminal FMRP fragment (aa 1-297) is sufficient to rapidly normalize tonic inhibition in Fmr1 knockout (KO) granule cells. FMRP-GABAAR interaction is supported by co-immunoprecipitation of FMRP with at least one GABAAR subunit, the α5. Functionally, FMRP-GABAAR interaction ensures accuracy of coincidence detection of granule cells, which is markedly reduced in Fmr1 KOs. Our study reveals a mechanism underlying FMRP regulation of the GABAergic system and information processing in the hippocampus.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Síndrome del Cromosoma X Frágil , Animales , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/metabolismo , Hipocampo/metabolismo , Humanos , Ratones , Ratones Noqueados , Receptores de GABA-A/metabolismo , Ácido gamma-Aminobutírico
4.
Nat Rev Neurosci ; 22(5): 275-289, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33828309

RESUMEN

Fragile X syndrome (FXS) is the most common inherited form of intellectual disability and the leading monogenic cause of autism. The condition stems from loss of fragile X mental retardation protein (FMRP), which regulates a wide range of ion channels via translational control, protein-protein interactions and second messenger pathways. Rapidly increasing evidence demonstrates that loss of FMRP leads to numerous ion channel dysfunctions (that is, channelopathies), which in turn contribute significantly to FXS pathophysiology. Consistent with this, pharmacological or genetic interventions that target dysregulated ion channels effectively restore neuronal excitability, synaptic function and behavioural phenotypes in FXS animal models. Recent studies further support a role for direct and rapid FMRP-channel interactions in regulating ion channel function. This Review lays out the current state of knowledge in the field regarding channelopathies and the pathogenesis of FXS, including promising therapeutic implications.


Asunto(s)
Canalopatías/etiología , Canalopatías/fisiopatología , Síndrome del Cromosoma X Frágil/complicaciones , Síndrome del Cromosoma X Frágil/fisiopatología , Animales , Canalopatías/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Humanos
5.
Front Mol Neurosci ; 14: 796053, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35002623

RESUMEN

Sensory hypersensitivity and somatosensory deficits represent the core symptoms of Fragile X syndrome (FXS). These alterations are believed to arise from changes in cortical sensory processing, while potential deficits in the function of peripheral sensory neurons residing in dorsal root ganglia remain unexplored. We found that peripheral sensory neurons exhibit pronounced hyperexcitability in Fmr1 KO mice, manifested by markedly increased action potential (AP) firing rate and decreased threshold. Unlike excitability changes found in many central neurons, no significant changes were observed in AP rising and falling time, peak potential, amplitude, or duration. Sensory neuron hyperexcitability was caused primarily by increased input resistance, without changes in cell capacitance or resting membrane potential. Analyses of the underlying mechanisms revealed reduced activity of HCN channels and reduced expression of HCN1 and HCN4 in Fmr1 KO compared to WT. A selective HCN channel blocker abolished differences in all measures of sensory neuron excitability between WT and Fmr1 KO neurons. These results reveal a hyperexcitable state of peripheral sensory neurons in Fmr1 KO mice caused by dysfunction of HCN channels. In addition to the intrinsic neuronal dysfunction, the accompanying paper examines deficits in sensory neuron association/communication with their enveloping satellite glial cells, suggesting contributions from both neuronal intrinsic and extrinsic mechanisms to sensory dysfunction in the FXS mouse model.

6.
Front Mol Neurosci ; 14: 796070, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35058748

RESUMEN

Among most prevalent deficits in individuals with Fragile X syndrome (FXS) is hypersensitivity to sensory stimuli and somatosensory alterations. Whether dysfunction in peripheral sensory system contributes to these deficits remains poorly understood. Satellite glial cells (SGCs), which envelop sensory neuron soma, play critical roles in regulating neuronal function and excitability. The potential contributions of SGCs to sensory deficits in FXS remain unexplored. Here we found major structural defects in sensory neuron-SGC association in the dorsal root ganglia (DRG), manifested by aberrant covering of the neuron and gaps between SGCs and the neuron along their contact surface. Single-cell RNAseq analyses demonstrated transcriptional changes in both neurons and SGCs, indicative of defects in neuronal maturation and altered SGC vesicular secretion. We validated these changes using fluorescence microscopy, qPCR, and high-resolution transmission electron microscopy (TEM) in combination with computational analyses using deep learning networks. These results revealed a disrupted neuron-glia association at the structural and functional levels. Given the well-established role for SGCs in regulating sensory neuron function, altered neuron-glia association may contribute to sensory deficits in FXS.

7.
Nat Commun ; 11(1): 4891, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32994417

RESUMEN

Peripheral sensory neurons regenerate their axon after nerve injury to enable functional recovery. Intrinsic mechanisms operating in sensory neurons are known to regulate nerve repair, but whether satellite glial cells (SGC), which completely envelop the neuronal soma, contribute to nerve regeneration remains unexplored. Using a single cell RNAseq approach, we reveal that SGC are distinct from Schwann cells and share similarities with astrocytes. Nerve injury elicits changes in the expression of genes related to fatty acid synthesis and peroxisome proliferator-activated receptor (PPARα) signaling. Conditional deletion of fatty acid synthase (Fasn) in SGC impairs axon regeneration. The PPARα agonist fenofibrate rescues the impaired axon regeneration in mice lacking Fasn in SGC. These results indicate that PPARα activity downstream of FASN in SGC contributes to promote axon regeneration in adult peripheral nerves and highlight that the sensory neuron and its surrounding glial coat form a functional unit that orchestrates nerve repair.


Asunto(s)
Regeneración Nerviosa , Neuroglía/citología , Células Receptoras Sensoriales/citología , Animales , Axones/fisiología , Proliferación Celular , Ácido Graso Sintasas/genética , Ácido Graso Sintasas/metabolismo , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Neuroglía/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , Traumatismos de los Nervios Periféricos/genética , Traumatismos de los Nervios Periféricos/metabolismo , Traumatismos de los Nervios Periféricos/fisiopatología , Nervios Periféricos/crecimiento & desarrollo , Nervios Periféricos/metabolismo , Nervios Periféricos/fisiopatología , Células Receptoras Sensoriales/metabolismo , Transducción de Señal
8.
J Neurosci ; 39(1): 28-43, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30389838

RESUMEN

Neuronal hyperexcitability is one of the major characteristics of fragile X syndrome (FXS), yet the molecular mechanisms of this critical dysfunction remain poorly understood. Here we report a major role of voltage-independent potassium (K+)-channel dysfunction in hyperexcitability of CA3 pyramidal neurons in Fmr1 knock-out (KO) mice. We observed a reduction of voltage-independent small conductance calcium (Ca2+)-activated K+ (SK) currents in both male and female mice, leading to decreased action potential (AP) threshold and reduced medium afterhyperpolarization. These SK-channel-dependent deficits led to markedly increased AP firing and abnormal input-output signal transmission of CA3 pyramidal neurons. The SK-current defect was mediated, at least in part, by loss of FMRP interaction with the SK channels (specifically the SK2 isoform), without changes in channel expression. Intracellular application of selective SK-channel openers or a genetic reintroduction of an N-terminal FMRP fragment lacking the ability to associate with polyribosomes normalized all observed excitability defects in CA3 pyramidal neurons of Fmr1 KO mice. These results suggest that dysfunction of voltage-independent SK channels is the primary cause of CA3 neuronal hyperexcitability in Fmr1 KO mice and support the critical translation-independent role for the fragile X mental retardation protein as a regulator of neural excitability. Our findings may thus provide a new avenue to ameliorate hippocampal excitability defects in FXS.SIGNIFICANCE STATEMENT Despite two decades of research, no effective treatment is currently available for fragile X syndrome (FXS). Neuronal hyperexcitability is widely considered one of the hallmarks of FXS. Excitability research in the FXS field has thus far focused primarily on voltage-gated ion channels, while contributions from voltage-independent channels have been largely overlooked. Here we report that voltage-independent small conductance calcium-activated potassium (SK)-channel dysfunction causes hippocampal neuron hyperexcitability in the FXS mouse model. Our results support the idea that translation-independent function of fragile X mental retardation protein has a major role in regulating ion-channel activity, specifically the SK channels, in hyperexcitability defects in FXS. Our findings may thus open a new direction to ameliorate hippocampal excitability defects in FXS.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/fisiología , Hipocampo/fisiología , Neuronas/fisiología , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo , Potenciales de Acción/fisiología , Animales , Región CA3 Hipocampal/citología , Región CA3 Hipocampal/fisiología , Femenino , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fibras Musgosas del Hipocampo/fisiología , Células Piramidales/fisiología , Receptores de Ácido Kaínico/genética , Receptores de Ácido Kaínico/fisiología , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/agonistas , Transmisión Sináptica/fisiología
9.
Cell Rep ; 25(6): 1404-1414.e6, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30403997

RESUMEN

Mutations of the transcriptional regulator PHF6 cause the X-linked intellectual disability disorder Börjeson-Forssman-Lehmann syndrome (BFLS), but the pathogenesis of BFLS remains poorly understood. Here, we report a mouse model of BFLS, generated using a CRISPR-Cas9 approach, in which cysteine 99 within the PHD domain of PHF6 is replaced with phenylalanine (C99F). Mice harboring the patient-specific C99F mutation display deficits in cognitive functions, emotionality, and social behavior, as well as reduced threshold to seizures. Electrophysiological studies reveal that the intrinsic excitability of entorhinal cortical stellate neurons is increased in PHF6 C99F mice. Transcriptomic analysis of the cerebral cortex in C99F knockin mice and PHF6 knockout mice show that PHF6 promotes the expression of neurogenic genes and represses synaptic genes. PHF6-regulated genes are also overrepresented in gene signatures and modules that are deregulated in neurodevelopmental disorders of cognition. Our findings advance our understanding of the mechanisms underlying BFLS pathogenesis.


Asunto(s)
Epilepsia/patología , Cara/anomalías , Dedos/anomalías , Trastornos del Crecimiento/patología , Hipogonadismo/patología , Discapacidad Intelectual Ligada al Cromosoma X/patología , Obesidad/patología , Animales , Secuencia de Bases , Encéfalo/patología , Proteínas Portadoras/genética , Cognición , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Emociones , Epilepsia/genética , Cara/patología , Dedos/patología , Regulación de la Expresión Génica , Trastornos del Crecimiento/genética , Hipogonadismo/genética , Relaciones Interpersonales , Masculino , Discapacidad Intelectual Ligada al Cromosoma X/genética , Ratones , Ratones Mutantes , Neuronas/metabolismo , Neuronas/patología , Obesidad/genética , Proteínas Represoras , Convulsiones/patología , Sinapsis/metabolismo , Transcripción Genética
10.
Cell Rep ; 16(12): 3157-3166, 2016 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-27653682

RESUMEN

Altered neuronal excitability is one of the hallmarks of fragile X syndrome (FXS), but the mechanisms underlying this critical neuronal dysfunction are poorly understood. Here, we find that pyramidal cells in the entorhinal cortex of Fmr1 KO mice, an established FXS mouse model, display a decreased AP threshold and increased neuronal excitability. The AP threshold changes in Fmr1 KO mice are caused by increased persistent sodium current (INaP). Our results indicate that this abnormal INaP in Fmr1 KO animals is mediated by increased mGluR5-PLC-PKC (metabotropic glutamate receptor 5/phospholipase C/protein kinase C) signaling. These findings identify Na(+) channel dysregulation as a major cause of neuronal hyperexcitability in cortical FXS neurons and uncover a mechanism by which abnormal mGluR5 signaling causes neuronal hyperexcitability in a FXS mouse model.


Asunto(s)
Potenciales de Acción/fisiología , Corteza Entorrinal/fisiopatología , Potenciales Postsinápticos Excitadores/fisiología , Síndrome del Cromosoma X Frágil/fisiopatología , Neuronas/metabolismo , Animales , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Ratones , Ratones Noqueados , Receptor del Glutamato Metabotropico 5/metabolismo
11.
J Physiol ; 594(1): 83-97, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26427907

RESUMEN

KEY POINTS: Single-channel recordings in CA3 pyramidal neurons revealed that large-conductance calcium-activated K(+) (BK) channel open probability was reduced by loss of fragile X mental retardation protein (FMRP) and that FMRP acts on BK channels by modulating the channel's gating kinetics. Fmr1/BKß4 double knockout mice were generated to genetically upregulate BK channel activity in the absence of FMRP. Deletion of the BKß4 subunit alleviated reduced BK channel open probability via increasing BK channel open frequency, but not through prolonging its open duration. Genetic upregulation of BK channel activity via deletion of BKß4 normalized action potential duration, excessive glutamate release and short-term synaptic plasticity during naturalistic stimulus trains in excitatory hippocampal neurons in the absence of FMRP. Genetic upregulation of BK channel activity via deletion of BKß4 was sufficient to normalize excessive epileptiform activity in an in vitro model of seizure activity in the hippocampal circuit in the absence of FMRP. Loss of fragile X mental retardation protein (FMRP) causes fragile X syndrome (FXS), yet the mechanisms underlying the pathophysiology of FXS are incompletely understood. Recent studies identified important new functions of FMRP in regulating neural excitability and synaptic transmission via both translation-dependent mechanisms and direct interactions of FMRP with a number of ion channels in the axons and presynaptic terminals. Among these presynaptic FMRP functions, FMRP interaction with large-conductance calcium-activated K(+) (BK) channels, specifically their auxiliary ß4 subunit, regulates action potential waveform and glutamate release in hippocampal and cortical pyramidal neurons. Given the multitude of ion channels and mechanisms that mediate presynaptic FMRP actions, it remains unclear, however, to what extent FMRP-BK channel interactions contribute to synaptic and circuit defects in FXS. To examine this question, we generated Fmr1/ß4 double knockout (dKO) mice to genetically upregulate BK channel activity in the absence of FMRP and determine its ability to normalize multilevel defects caused by FMRP loss. Single-channel analyses revealed that FMRP loss reduced BK channel open probability, and this defect was compensated in dKO mice. Furthermore, dKO mice exhibited normalized action potential duration, glutamate release and short-term dynamics during naturalistic stimulus trains in hippocampal pyramidal neurons. BK channel upregulation was also sufficient to correct excessive seizure susceptibility in an in vitro model of seizure activity in hippocampal slices. Our studies thus suggest that upregulation of BK channel activity normalizes multi-level deficits caused by FMRP loss.


Asunto(s)
Potenciales de Acción , Potenciales Postsinápticos Excitadores , Síndrome del Cromosoma X Frágil/metabolismo , Subunidades beta de los Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Células Piramidales/metabolismo , Regulación hacia Arriba , Animales , Región CA3 Hipocampal/citología , Región CA3 Hipocampal/metabolismo , Región CA3 Hipocampal/fisiología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Subunidades beta de los Canales de Potasio de Gran Conductancia Activados por el Calcio/genética , Ratones , Ratones Endogámicos C57BL , Células Piramidales/fisiología
12.
Proc Natl Acad Sci U S A ; 112(4): 949-56, 2015 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-25561520

RESUMEN

Fragile X syndrome (FXS) results in intellectual disability (ID) most often caused by silencing of the fragile X mental retardation 1 (FMR1) gene. The resulting absence of fragile X mental retardation protein 1 (FMRP) leads to both pre- and postsynaptic defects, yet whether the pre- and postsynaptic functions of FMRP are independent and have distinct roles in FXS neuropathology remain poorly understood. Here, we demonstrate an independent presynaptic function for FMRP through the study of an ID patient with an FMR1 missense mutation. This mutation, c.413G > A (R138Q), preserves FMRP's canonical functions in RNA binding and translational regulation, which are traditionally associated with postsynaptic compartments. However, neuronally driven expression of the mutant FMRP is unable to rescue structural defects at the neuromuscular junction in fragile x mental retardation 1 (dfmr1)-deficient Drosophila, suggesting a presynaptic-specific impairment. Furthermore, mutant FMRP loses the ability to rescue presynaptic action potential (AP) broadening in Fmr1 KO mice. The R138Q mutation also disrupts FMRP's interaction with the large-conductance calcium-activated potassium (BK) channels that modulate AP width. These results reveal a presynaptic- and translation-independent function of FMRP that is linked to a specific subset of FXS phenotypes.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil , Mutación Missense , Convulsiones , Potenciales de Acción/genética , Sustitución de Aminoácidos , Animales , Niño , Preescolar , Drosophila , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/patología , Síndrome del Cromosoma X Frágil/fisiopatología , Regulación de la Expresión Génica/genética , Humanos , Masculino , Ratones , Convulsiones/genética , Convulsiones/metabolismo , Convulsiones/patología , Convulsiones/fisiopatología
13.
Neuron ; 84(2): 311-23, 2014 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-25374357

RESUMEN

The promise of using reprogrammed human neurons for disease modeling and regenerative medicine relies on the ability to induce patient-derived neurons with high efficiency and subtype specificity. We have previously shown that ectopic expression of brain-enriched microRNAs (miRNAs), miR-9/9* and miR-124 (miR-9/9*-124), promoted direct conversion of human fibroblasts into neurons. Here we show that coexpression of miR-9/9*-124 with transcription factors enriched in the developing striatum, BCL11B (also known as CTIP2), DLX1, DLX2, and MYT1L, can guide the conversion of human postnatal and adult fibroblasts into an enriched population of neurons analogous to striatal medium spiny neurons (MSNs). When transplanted in the mouse brain, the reprogrammed human cells persisted in situ for over 6 months, exhibited membrane properties equivalent to native MSNs, and extended projections to the anatomical targets of MSNs. These findings highlight the potential of exploiting the synergism between miR-9/9*-124 and transcription factors to generate specific neuronal subtypes.


Asunto(s)
Diferenciación Celular/fisiología , Cuerpo Estriado/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , MicroARNs/metabolismo , Neostriado/citología , Neuronas/metabolismo , Animales , Células Cultivadas , Humanos , Ratones , Factores de Transcripción/metabolismo
14.
Eur J Neurosci ; 39(10): 1602-12, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24646437

RESUMEN

Transcriptional silencing of the Fmr1 gene encoding fragile X mental retardation protein (FMRP) causes fragile X syndrome (FXS), the most common form of inherited intellectual disability and the leading genetic cause of autism. FMRP has been suggested to play important roles in regulating neurotransmission and short-term synaptic plasticity at excitatory hippocampal and cortical synapses. However, the origins and mechanisms of these FMRP actions remain incompletely understood, and the role of FMRP in regulating synaptic release probability and presynaptic function remains debated. Here we used variance-mean analysis and peak-scaled nonstationary variance analysis to examine changes in both presynaptic and postsynaptic parameters during repetitive activity at excitatory CA3-CA1 hippocampal synapses in a mouse model of FXS. Our analyses revealed that loss of FMRP did not affect the basal release probability or basal synaptic transmission, but caused an abnormally elevated release probability specifically during repetitive activity. These abnormalities were not accompanied by changes in excitatory postsynaptic current kinetics, quantal size or postsynaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor conductance. Our results thus indicate that FMRP regulates neurotransmission at excitatory hippocampal synapses specifically during repetitive activity via modulation of release probability in a presynaptic manner. Our study suggests that FMRP function in regulating neurotransmitter release is an activity-dependent phenomenon that may contribute to the pathophysiology of FXS.


Asunto(s)
Región CA1 Hipocampal/fisiopatología , Región CA3 Hipocampal/fisiopatología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/fisiopatología , Transmisión Sináptica , Animales , Modelos Animales de Enfermedad , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Cinética , Masculino , Ratones Noqueados , Técnicas de Placa-Clamp , Terminales Presinápticos/fisiología , Células Piramidales/fisiología , Receptores AMPA/metabolismo , Sinapsis/fisiología
15.
Neuron ; 77(4): 696-711, 2013 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-23439122

RESUMEN

Loss of FMRP causes fragile X syndrome (FXS), but the physiological functions of FMRP remain highly debatable. Here we show that FMRP regulates neurotransmitter release in CA3 pyramidal neurons by modulating action potential (AP) duration. Loss of FMRP leads to excessive AP broadening during repetitive activity, enhanced presynaptic calcium influx, and elevated neurotransmitter release. The AP broadening defects caused by FMRP loss have a cell-autonomous presynaptic origin and can be acutely rescued in postnatal neurons. These presynaptic actions of FMRP are translation independent and are mediated selectively by BK channels via interaction of FMRP with BK channel's regulatory ß4 subunits. Information-theoretical analysis demonstrates that loss of these FMRP functions causes marked dysregulation of synaptic information transmission. FMRP-dependent AP broadening is not limited to the hippocampus, but also occurs in cortical pyramidal neurons. Our results thus suggest major translation-independent presynaptic functions of FMRP that may have important implications for understanding FXS neuropathology.


Asunto(s)
Potenciales de Acción/fisiología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Neuronas/metabolismo , Neurotransmisores/metabolismo , Transmisión Sináptica , Animales , Calcio/metabolismo , Potenciales Postsinápticos Excitadores/fisiología , Síndrome del Cromosoma X Frágil/metabolismo , Hipocampo/metabolismo , Ratones , Terminales Presinápticos
16.
Neuron ; 73(6): 1108-15, 2012 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-22445339

RESUMEN

Synaptic vesicle exo- and endocytosis are usually driven by neuronal activity but can also occur spontaneously. The identity and differences between vesicles supporting evoked and spontaneous neurotransmission remain highly debated. Here we combined nanometer-resolution imaging with a transient motion analysis approach to examine the dynamics of individual synaptic vesicles in hippocampal terminals under physiological conditions. We found that vesicles undergoing spontaneous and stimulated endocytosis differ in their dynamic behavior, particularly in the ability to engage in directed motion. Our data indicate that such motional differences depend on the myosin family of motor proteins, particularly myosin II. Analysis of synaptic transmission in the presence of myosin II inhibitor confirmed a specific role for myosin II in evoked, but not spontaneous, neurotransmission and also suggested a functional role of myosin II-mediated vesicle motion in supporting vesicle mobilization during neural activity.


Asunto(s)
Endocitosis/fisiología , Neuronas/fisiología , Neuronas/ultraestructura , Sinapsis/fisiología , Vesículas Sinápticas/fisiología , Análisis de Varianza , Animales , Animales Recién Nacidos , Azepinas/farmacología , Biofisica , Células Cultivadas , Estimulación Eléctrica , Inhibidores Enzimáticos/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Colorantes Fluorescentes/metabolismo , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Hipocampo/citología , Microscopía Fluorescente , Neuronas/efectos de los fármacos , Dinámicas no Lineales , Técnicas de Cultivo de Órganos , Técnicas de Placa-Clamp , Ratas , Bloqueadores de los Canales de Sodio/farmacología , Estadísticas no Paramétricas , Sinapsis/efectos de los fármacos , Vesículas Sinápticas/efectos de los fármacos , Tetrodotoxina/farmacología , Factores de Tiempo
17.
Hippocampus ; 22(6): 1438-50, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22072552

RESUMEN

Although cholecystokinin (CCK) has long been known to exert anxiogenic effects in both animal anxiety models and humans, the underlying cellular and molecular mechanisms are ill-defined. CCK interacts with CCK-1 and CCK-2 receptors resulting in up-regulation of phospholipase C (PLC) and protein kinase C (PKC). However, the roles of PLC and PKC in CCK-mediated anxiogenic effects have not been determined. We have shown previously that CCK facilitates glutamate release in the hippocampus especially at the synapses formed by the perforant path and dentate gyrus granule cells via activations of PLC and PKC. Here we further demonstrated that CCK enhanced NMDA receptor function in dentate gyrus granule cells via activation of PLC and PKC pathway. At the single-channel level, CCK increased NMDA single-channel open probability and mean open time, reduced the mean close time, and had no effects on the conductance of NMDA channels. Because elevation of glutamatergic functions results in anxiety, we explored the roles of PLC and PKC in CCK-induced anxiogenic actions using the Vogel Conflict Test (VCT). Our results from both pharmacological approach and knockout mice demonstrated that microinjection of CCK into the dentate gyrus concentration-dependently increased anxiety-like behavior via activation of PLC and PKC. Our results provide a novel unidentified signaling mechanism whereby CCK increases anxiety.


Asunto(s)
Ansiedad/inducido químicamente , Ansiedad/enzimología , Colecistoquinina/administración & dosificación , Proteína Quinasa C/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Fosfolipasas de Tipo C/fisiología , Animales , Colecistoquinina/fisiología , Relación Dosis-Respuesta a Droga , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Femenino , Activación del Canal Iónico/fisiología , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Microinyecciones , Ratas , Ratas Sprague-Dawley
18.
Commun Integr Biol ; 4(5): 543-8, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22046457

RESUMEN

Short-term plasticity (STP) comprises several rapid synaptic processes that operate on millisecond-to-minute timescales and modulate synaptic efficacy in an activity-dependent manner. Facilitation and augmentation are two major STP components in central synapses that work to enhance synaptic strength, while various forms of short-term depression work to decrease it. These multiple components of STP interact to perform a variety of synaptic computations. Using a modeling approach in excitatory hippocampal synapses, we recently described the contributions of individual STP components to synaptic operations. In this mini-review, we summarize the recent findings that revealed a wide palette of functions that STP components play in neural operations and discuss their roles in information processing, working memory and decision making.

19.
J Neurosci ; 31(41): 14800-9, 2011 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-21994397

RESUMEN

Short-term synaptic plasticity (STP) is widely thought to play an important role in information processing. This major function of STP has recently been challenged, however, by several computational studies indicating that transmission of information by dynamic synapses is broadband, i.e., frequency independent. Here we developed an analytical approach to quantify time- and rate-dependent synaptic information transfer during arbitrary spike trains using a realistic model of synaptic dynamics in excitatory hippocampal synapses. We found that STP indeed increases information transfer in a wide range of input rates, which corresponds well to the naturally occurring spike frequencies at these synapses. This increased information transfer is observed both during Poisson-distributed spike trains with a constant rate and during naturalistic spike trains recorded in hippocampal place cells in exploring rodents. Interestingly, we found that the presence of STP in low release probability excitatory synapses leads to optimization of information transfer specifically for short high-frequency bursts, which are indeed commonly observed in many excitatory hippocampal neurons. In contrast, more reliable high release probability synapses that express dominant short-term depression are predicted to have optimal information transmission for single spikes rather than bursts. This prediction is verified in analyses of experimental recordings from high release probability inhibitory synapses in mouse hippocampal slices and fits well with the observation that inhibitory hippocampal interneurons do not commonly fire spike bursts. We conclude that STP indeed contributes significantly to synaptic information transfer and may serve to maximize information transfer for specific firing patterns of the corresponding neurons.


Asunto(s)
Plasticidad Neuronal/fisiología , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Animales , Animales Recién Nacidos , Simulación por Computador , Estimulación Eléctrica/métodos , Hipocampo/citología , Técnicas In Vitro , Ratones , Modelos Neurológicos , Dinámicas no Lineales , Técnicas de Placa-Clamp , Valor Predictivo de las Pruebas , Probabilidad
20.
J Neurosci ; 31(30): 10971-82, 2011 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-21795546

RESUMEN

Fragile X syndrome (FXS) is the most common inherited form of intellectual disability and the leading genetic cause of autism. It is associated with the lack of fragile X mental retardation protein (FMRP), a regulator of protein synthesis in axons and dendrites. Studies on FXS have extensively focused on the postsynaptic changes underlying dysfunctions in long-term plasticity. In contrast, the presynaptic mechanisms of FXS have garnered relatively little attention and are poorly understood. Activity-dependent presynaptic processes give rise to several forms of short-term plasticity (STP), which is believed to control some of essential neural functions, including information processing, working memory, and decision making. The extent of STP defects and their contributions to the pathophysiology of FXS remain essentially unknown, however. Here we report marked presynaptic abnormalities at excitatory hippocampal synapses in Fmr1 knock-out (KO) mice leading to defects in STP and information processing. Loss of FMRP led to enhanced responses to high-frequency stimulation. Fmr1 KO mice also exhibited abnormal synaptic processing of natural stimulus trains, specifically excessive enhancement during the high-frequency spike discharges associated with hippocampal place fields. Analysis of individual STP components revealed strongly increased augmentation and reduced short-term depression attributable to loss of FMRP. These changes were associated with exaggerated calcium influx in presynaptic neurons during high-frequency stimulation, enhanced synaptic vesicle recycling, and enlarged readily-releasable and reserved vesicle pools. These data suggest that loss of FMRP causes abnormal STP and information processing, which may represent a novel mechanism contributing to cognitive impairments in FXS.


Asunto(s)
Síndrome del Cromosoma X Frágil/patología , Síndrome del Cromosoma X Frágil/fisiopatología , Plasticidad Neuronal/fisiología , Terminales Presinápticos/fisiología , Sinapsis/patología , Animales , Animales Recién Nacidos , Calcio/metabolismo , Modelos Animales de Enfermedad , Estimulación Eléctrica/métodos , Potenciales Postsinápticos Excitadores/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Antagonistas del GABA/farmacología , Hipocampo/patología , Técnicas In Vitro , Ratones , Ratones Noqueados , Microscopía Electrónica de Transmisión , Inhibición Neural/efectos de los fármacos , Inhibición Neural/genética , Técnicas de Placa-Clamp , Ácidos Fosfínicos/farmacología , Piperidinas/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Propanolaminas/farmacología , Bloqueadores de los Canales de Sodio/farmacología , Sinapsis/ultraestructura , Tetraetilamonio/farmacología , Tetrodotoxina/farmacología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...