Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancer Res ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38657120

RESUMEN

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with limited therapeutic options. Interleukin-1 receptor type 2 (IL1R2) promotes breast tumor-initiating cell (BTIC) self-renewal and tumor growth in TNBC, indicating that targeting it could improve patient treatment. Here, we observed that IL1R2 blockade strongly attenuated macrophage recruitment and the polarization of tumor-associated macrophages (TAMs) to inhibit BTIC self-renewal and CD8+ T cell exhaustion, which resulted in reduced tumor burden and prolonged survival in TNBC mouse models. IL1R2 activation by TAM-derived IL1ß increased PD-L1 expression by interacting with the transcription factor yin yang 1 (YY1) and inducing YY1 ubiquitination and proteasomal degradation in both TAMs and TNBC cells. Loss of YY1 alleviated the transcriptional repression of c-Fos, which is a transcriptional activator of PD-L1. Combined treatment with an IL1R2-neutralizing antibody and anti-PD-1 led to enhanced anti-tumor efficacy and reduced TAMs, BTICs, and exhausted CD8+ T cells. These results suggest that IL1R2 blockade might be a strategy to potentiate immune checkpoint blockade efficacy in TNBC to improve patient outcomes.

2.
Protein Cell ; 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38437016

RESUMEN

Tumor-resident microbiota in breast cancer promote cancer initiation and malignant progression. However, targeting microbiota to improve the effects of breast cancer therapy has not been investigated in detail. Here, we evaluated the microbiota composition of breast tumors and found that enterotoxigenic Bacteroides fragilis (ETBF) was highly enriched in the tumors of patients who did not respond to taxane-based neoadjuvant chemotherapy. ETBF, albeit at low biomass, secreted the toxic protein BFT-1 to promote breast cancer cell stemness and chemoresistance. Mechanistic studies showed that BFT-1 directly bound to NOD1 and stabilized NOD1 protein. NOD1 was highly expressed on ALDH+ breast cancer stem cells (BCSCs) and cooperated with GAK to phosphorylate NUMB and promote its lysosomal degradation, thereby activating the NOTCH1-HEY1 signaling pathway to increase BCSCs. NOD1 inhibition and ETBF clearance increases the chemosensitivity of breast cancer by impairing BCSCs.

3.
Signal Transduct Target Ther ; 8(1): 97, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36859354

RESUMEN

Our previous studies have showed that C-C motif chemokine ligand 20 (CCL20) advanced tumor progression and enhanced the chemoresistance of cancer cells by positively regulating breast cancer stem cell (BCSC) self-renewal. However, it is unclear whether CCL20 affects breast cancer progression by remodeling the tumor microenvironment (TME). Here, we observed that polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) were remarkably enriched in TME of CCL20-overexpressing cancer cell orthotopic allograft tumors. Mechanistically, CCL20 activated the differentiation of granulocyte-monocyte progenitors (GMPs) via its receptor C-C motif chemokine receptor 6 (CCR6) leading to the PMN-MDSC expansion. PMN-MDSCs from CCL20-overexpressing cell orthotopic allograft tumors (CCL20-modulated PMN-MDSCs) secreted amounts of C-X-C motif chemokine ligand 2 (CXCL2) and increased ALDH+ BCSCs via activating CXCR2/NOTCH1/HEY1 signaling pathway. Furthermore, C-X-C motif chemokine receptor 2 (CXCR2) antagonist SB225002 enhanced the docetaxel (DTX) effects on tumor growth by decreasing BCSCs in CCL20high-expressing tumors. These findings elucidated how CCL20 modulated the TME to promote cancer development, indicating a new therapeutic strategy by interfering with the interaction between PMN-MDSCs and BCSCs in breast cancer, especially in CCL20high-expressing breast cancer.


Asunto(s)
Neoplasias de la Mama , Quimiocinas , Células Supresoras de Origen Mieloide , Células Madre Neoplásicas , Diferenciación Celular , Ligandos , Receptores de Interleucina-8B , Humanos , Animales , Línea Celular Tumoral
4.
J Immunother Cancer ; 10(5)2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35613826

RESUMEN

BACKGROUND: Although the antitumor efficacy of docetaxel (DTX) has long been attributed to the antimitotic activities, its impact on the tumor microenvironment (TME) has recently gained more attention. Macrophages are a major component of the TME and play a critical role in DTX efficacy; however, the underlying action mechanisms remain unclear. METHODS: DTX chemotherapeutic efficacy was demonstrated via both macrophage depletion and C-C motif chemokine ligand 3 (Ccl3)-knockout transgenic allograft mouse model. Ccl3-knockdown and Ccl3-overexpressing breast cancer cell allografts were used for the in vivo study. Combination therapy was used to evaluate the effect of Ccl3 induction on DTX chemosensitivity. Vital regulatory molecules and pathways were identified using RNA sequencing. Macrophage phagocytosis of cancer cells and its influence on cancer cell proliferation under DTX treatment were assessed using an in vitro coculture assay. Serum and tumor samples from patients with breast cancer were used to demonstrate the clinical relevance of our study. RESULTS: Our study revealed that Ccl3 induced by DTX in macrophages and cancer cells was indispensable for the chemotherapeutic efficacy of DTX. DTX-induced Ccl3 promoted proinflammatory macrophage polarization and subsequently facilitated phagocytosis of breast cancer cells and cancer stem cells. Ccl3 overexpression in cancer cells promoted proinflammatory macrophage polarization to suppress tumor progression and increase DTX chemosensitivity. Mechanistically, DTX induced Ccl3 by relieving the inhibition of cAMP-response element binding protein on Ccl3 via reactive oxygen species accumulation, and Ccl3 then promoted proinflammatory macrophage polarization via activation of the Ccl3-C-C motif chemokine receptor 5-p38/interferon regulatory factor 5 pathway. High CCL3 expression predicted better prognosis, and high CCL3 induction revealed better DTX chemosensitivity in patients with breast cancer. Furthermore, both the Creb inhibitor and recombinant mouse Ccl3 significantly enhanced DTX chemosensitivity. CONCLUSIONS: Our results indicate that Ccl3 induced by DTX triggers proinflammatory macrophage polarization and subsequently facilitates phagocytosis of cancer cells. Ccl3 induction in combination with DTX may provide a promising therapeutic rationale for increasing DTX chemosensitivity in breast cancer.


Asunto(s)
Neoplasias de la Mama , Quimiocina CCL3 , Macrófagos , Animales , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Proliferación Celular , Quimiocina CCL3/inmunología , Quimiocina CCL3/metabolismo , Docetaxel/farmacología , Docetaxel/uso terapéutico , Femenino , Humanos , Activación de Macrófagos , Macrófagos/inmunología , Macrófagos/patología , Ratones , Microambiente Tumoral
5.
Front Oncol ; 11: 722624, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34778038

RESUMEN

Ribophorin 1 (RPN1) is a major part of Oligosaccharyltransferase (OST) complex, which is vital for the N-linked glycosylation. Though it has been verified that the abnormal glycosylation is closely related to the development of breast cancer, the detail role of RPN1 in breast cancer remains unknown. In this study, we explored the public databases to investigate the relationship between the expression levels of OST subunits and the prognosis of breast cancer. Then, we focused on the function of RPN1 in breast cancer and its potential mechanisms. Our study showed that the expression of several OST subunits including RPN1, RPN2, STT3A STT3B, and DDOST were upregulated in breast cancer samples. The protein expression level of RPN1 was also upregulated in breast cancer. Higher expression of RPN1 was correlated with worse clinical features and poorer prognosis. Furthermore, knockdown of RPN1 suppressed the proliferation and invasion of breast cancer cells in vitro and induced cell apoptosis triggered by endoplasmic reticulum stress. Our results identified the oncogenic function of RPN1 in breast cancer, implying that RPN1 might be a potential biomarker and therapeutic target for breast cancer.

6.
Cancer Res ; 81(23): 5919-5934, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34580061

RESUMEN

Tumor-initiating cells (TIC) are associated with tumor initiation, growth, metastasis, and recurrence. Aldehyde dehydrogenase 1A1 (ALDH1A1) is a TIC marker in many cancers, including breast cancer. However, the molecular mechanisms underlying ALDH1A1 functions in solid tumors remain largely unknown. Here we demonstrate that ALDH1A1 enzymatic activity facilitates breast tumor growth. Mechanistically, ALDH1A1 decreased the intracellular pH in breast cancer cells to promote phosphorylation of TAK1, activate NFκB signaling, and increase the secretion of GM-CSF, which led to myeloid-derived suppressor cell expansion and immunosuppression. Furthermore, the ALDH1A1 inhibitor disulfiram and chemotherapeutic agent gemcitabine cooperatively inhibited breast tumor growth and tumorigenesis by purging ALDH+ TICs and activating T-cell immunity. These findings elucidate how active ALDH1A1 modulates the immune system to promote tumor development, highlighting new therapeutic strategies for malignant breast cancer. SIGNIFICANCE: ALDH1A1 enzyme activity induces MDSC expansion and triggers a procancer immune microenvironment to facilitate breast cancer progression, providing a novel therapeutic vulnerability in this disease.


Asunto(s)
Familia de Aldehído Deshidrogenasa 1/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Neoplasias de la Mama/patología , Tolerancia Inmunológica , Células Supresoras de Origen Mieloide/inmunología , Células Madre Neoplásicas/patología , Retinal-Deshidrogenasa/metabolismo , Microambiente Tumoral , Familia de Aldehído Deshidrogenasa 1/genética , Animales , Apoptosis , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Movimiento Celular , Proliferación Celular , Desoxicitidina/administración & dosificación , Desoxicitidina/análogos & derivados , Femenino , Regulación Neoplásica de la Expresión Génica , Factor Estimulante de Colonias de Granulocitos y Macrófagos/administración & dosificación , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Invasividad Neoplásica , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/inmunología , Células Madre Neoplásicas/metabolismo , Pronóstico , Proteínas Recombinantes/administración & dosificación , Retinal-Deshidrogenasa/genética , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto , Gemcitabina
7.
Nat Commun ; 12(1): 4413, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34285210

RESUMEN

Enhanced neovasculogenesis, especially vasculogenic mimicry (VM), contributes to the development of triple-negative breast cancer (TNBC). Breast tumor-initiating cells (BTICs) are involved in forming VM; however, the specific VM-forming BTIC population and the regulatory mechanisms remain undefined. We find that tumor endothelial marker 8 (TEM8) is abundantly expressed in TNBC and serves as a marker for VM-forming BTICs. Mechanistically, TEM8 increases active RhoC level and induces ROCK1-mediated phosphorylation of SMAD5, in a cascade essential for promoting stemness and VM capacity of breast cancer cells. ASB10, an estrogen receptor ERα trans-activated E3 ligase, ubiquitylates TEM8 for degradation, and its deficiency in TNBC resulted in a high homeostatic level of TEM8. In this work, we identify TEM8 as a functional marker for VM-forming BTICs in TNBC, providing a target for the development of effective therapies against TNBC targeting both BTIC self-renewal and neovasculogenesis simultaneously.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Proteínas de Microfilamentos/metabolismo , Células Madre Neoplásicas/patología , Neovascularización Patológica/patología , Receptores de Superficie Celular/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Biomarcadores de Tumor/antagonistas & inhibidores , Mama/patología , Mama/cirugía , Carcinogénesis/efectos de los fármacos , Carcinogénesis/patología , Línea Celular Tumoral , Autorrenovación de las Células/efectos de los fármacos , Femenino , Humanos , Mastectomía , Ratones , Proteínas de Microfilamentos/antagonistas & inhibidores , Persona de Mediana Edad , Células Madre Neoplásicas/efectos de los fármacos , Neovascularización Patológica/tratamiento farmacológico , Receptores de Superficie Celular/antagonistas & inhibidores , Neoplasias de la Mama Triple Negativas/irrigación sanguínea , Neoplasias de la Mama Triple Negativas/terapia , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Cell Biol Toxicol ; 37(2): 277-291, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32472219

RESUMEN

Uncoupling protein 1 (UCP1) has been implicated in ameliorating metabolic related disorders, of which most symptoms are risk factors for breast cancer. Here, we found that UCP1 was obviously downregulated in basal-like breast cancer (BLBC) and was positively correlated with improved survival. However, the underlying regulatory mechanisms remain largely unknown. Our studies showed that UCP1 inhibited tumor progression via suppressing aldehyde dehydrogenase (ALDH)-positive breast cancer stem cell (BCSC) population in BLBC. Furthermore, we found that UCP1 induced the upregulation of fructose bisphosphatase 1 (FBP1) which was previously blocked by Snail overexpression, and UCP1 decreased ALDH-positive BCSCs via FBP1-dependent metabolic rewiring, which could be reversed by Snail overexpression. In addition, breast cancer cells co-cultured with UCP1-deficient adipocytes had increased proportion of ALDH-positive BCSCs, indicating a potential protection role of UCP1 in tumor microenvironment. These results suggested that UCP1 suppressed BCSCs through inhibiting Snail-mediated repression of FBP1, and that upregulation of UCP1 might be a previously undescribed therapeutic strategy for combating breast cancer. Graphical abstract.


Asunto(s)
Aldehído Deshidrogenasa/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Factores de Transcripción de la Familia Snail/metabolismo , Proteína Desacopladora 1/metabolismo , Adipocitos/metabolismo , Carcinogénesis/metabolismo , Carcinogénesis/patología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Progresión de la Enfermedad , Femenino , Fructosa-Bifosfatasa/metabolismo , Glucólisis , Humanos , Invasividad Neoplásica , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Análisis de Supervivencia , Proteína Desacopladora 1/deficiencia , Regulación hacia Arriba
9.
Cell Biol Toxicol ; 35(2): 161-177, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30220009

RESUMEN

Aldehyde dehydrogenases (ALDHs) defend intracellular homeostasis by catalyzing the conversion of toxic aldehydes into non-toxic carboxylic acids, which is of particular importance to the self-renewal of stem cells and cancer stem cells. The widely used ALDEFLUOR assay was initially designed to indicate the activity of ALDH1A1 in leukemia and has been demonstrated to detect the enzyme activity of several other ALDH isoforms in various cancer types in recent years. However, it is still elusive which isoforms, among the 19 ALDH isoforms in human genome, are the potential contributors in catalyzing ALDEFLUOR assay in different cancers. In the current study, we performed a screening via overexpressing each ALDH isoform to assess their ability of catalyzing ALDEFLUOR assay. Our results demonstrate that nine isoforms are active in ALDEFLUOR assay, whose overexpression significantly increases ALDH-positive (ALDH+) population. Further analysis of the expression of these active isoforms in various cancers reveals cancer-type specific expression patterns, suggesting that different cancer types may exhibit ALDEFLUOR activity through expression of specific active ALDH isoforms. This study strongly indicates that a detailed elucidation of the functions for each active ALDH isoform in CSCs is necessary and important for a profound understanding of the underlying mechanisms of ALDH-associated stemness.


Asunto(s)
Aldehído Deshidrogenasa/genética , Isoenzimas/genética , Neoplasias/enzimología , Línea Celular , Perfilación de la Expresión Génica , Genoma Humano , Células HEK293 , Humanos , Técnicas para Inmunoenzimas , Neoplasias/genética , Células Madre Neoplásicas/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...