Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 365: 121610, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38955048

RESUMEN

Effective elimination of heavy metals from complex wastewater is of great significance for industrial wastewater treatment. Herein, bimetallic adsorbent Fe3O4-CeO2 was prepared, and H2O2 was added to enhance Sb(V) adsorption by Fe3O4-CeO2 in complex wastewater of Sb(V) and aniline aerofloat (AAF) for the first time. Fe3O4-CeO2 showed good adsorption performance and could be rapidly separated by external magnetic field. After five adsorption/desorption cycles, Fe3O4-CeO2 still maintained good stability. The maximum adsorption capacities of Fe3O4-CeO2 in single Sb(V), AAF + Sb(V), and H2O2+AAF + Sb(V) systems were 77.33, 70.14, and 80.59 mg/g, respectively. Coexisting AAF inhibited Sb(V) adsorption. Conversely, additional H2O2 promoted Sb(V) removal in AAF + Sb(V) binary system, and made the adsorption capacity of Fe3O4-CeO2 increase by 14.90%. H2O2 could not only accelerate the reaction rate, but also reduce the optimal amount of adsorbent from 2.0 g/L to 1.2 g/L. Meanwhile, coexisting anions had little effect on Sb(V) removal by Fe3O4-CeO2+H2O2 process. The adsorption behaviors of Sb(V) in three systems were better depicted by pseudo-second-order kinetics, implying that the chemisorption was dominant. The complexation of AAF with Sb(V) hindered the adsorption of Sb(V) by Fe3O4-CeO2. The complex Sb(V) was oxidized and decomposed into free state by hydroxyl radicals produced in Fe3O4-CeO2+H2O2 process. Then the free Sb(V) was adsorbed by Fe3O4-CeO2 mostly through outer-sphere complexation. This work provides a new tactic for the treatment of heavy metal-organics complex wastewater.


Asunto(s)
Peróxido de Hidrógeno , Aguas Residuales , Aguas Residuales/química , Peróxido de Hidrógeno/química , Adsorción , Contaminantes Químicos del Agua/química , Compuestos de Anilina/química , Cerio/química
2.
Ecotoxicol Environ Saf ; 271: 115961, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38218106

RESUMEN

Microalgae play a significant impact in the biogeochemical cycle of Mn(II) in the aquatic ecosystem. Meanwhile, the inflow of biochar into the water bodies is bound to impact the aquatic organisms. However, the influence of biochar on the manganese transformation in algae-rich water has not drawn much attention. Thus, we studied the effects of rice straw biochar on manganese enrichment and oxidation by a common type of algae in freshwater (Scenedesmus quadricauda). The results showed that Mn(II) was absorbed intracellularly and adsorbed extracellularly by active algal cells. A significant portion of enriched Mn(II) was oxidized to amorphous precipitates MnO2, MnOOH, and Mn2O3. Moreover, the extracellular bound Mn(II) content in the coexistent system of algae and biochar increased compared with the pure Scenedesmus quadricauda system. Nevertheless, the intracellular Mn content was continually lowered as the biochar dose rose from an initial 0.2 to 2.0 g·L-1, suggesting that Mn assimilation of the cell was suppressed. It was calculated that the total enrichment ability of Scenedesmus quadricauda in the algae-biochar coexistent system was 0.31- 15.32 mg Mn/g biomass, more than that in the pure algae system. More importantly, with biochar in the algae system, the amount of generated MnOx increased, and more Mn(II) was oxidized into highly-charged Mn(IV). This was probably because the biochar could relieve the stress of massive Mn(II) on algae and support the MnOx precipitates. In brief, moderate biochar promoted the Mn(II) accumulation by algal cells and its oxidation activity. This study offers deeper insight into the bioconversion of Mn(II) by algae and the potential impact of biochar application to the aquatic system.


Asunto(s)
Carbón Orgánico , Microalgas , Scenedesmus , Ecosistema , Manganeso/metabolismo , Compuestos de Manganeso , Óxidos , Agua/metabolismo
3.
Chemosphere ; 349: 140914, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38092173

RESUMEN

Magnetically modified carbon-based adsorbent (BC@γ-Fe2O3) was prepared through facile route using activated sludge biomass and evaluated for the simultaneous removal of Sb(III) and Pb(II). BC@γ-Fe2O3 exhibited outstanding Sb(III) and Pb(II) adsorption capacity when 200 mg of adsorbent was employed at pH 5.0 for 240 min, with the removal efficiency higher than 90%. The experiments demonstrated the excellent reusability and the potent anti-interference properties of the prepared absorbent. Freundlich and pseudo-second-order kinetic were prior to describe the adsorption process. The adsorption of Sb(III) and Pb(II) onto BC@γ-Fe2O3 was spontaneous and endothermic. BC@γ-Fe2O3 with high specific surface area revealed the exceptional competence to absorb Sb(III) and Pb(II) through pore filling, electrostatic adsorption and complexation. The adsorption mechanisms of Sb(III) and Pb(II) showed similarities with slight disparities. The removal of Sb(III) involved the Fe-O-Sb bond and π-π bond, while the adsorption of Pb(II) was closely related to ion exchange. Moreover, Sb(III) was oxidized to Sb(V) in a minor part during adsorption. The Fe-O-Cl active sites on BC allowed for the binding of γ-Fe2O3, guaranteeing the abundant adsorption sites and stability. BC@γ-Fe2O3 provides an efficient and green insight into the simultaneous removal of complex heavy metals with promising application in wastewater treatment.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Aguas del Alcantarillado , Adsorción , Plomo , Contaminantes Químicos del Agua/análisis , Carbón Orgánico/química , Cinética , Fenómenos Magnéticos
4.
Bioresour Technol ; 351: 126977, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35276376

RESUMEN

Biological nutrients removal performance affected by starvation stress was investigated via the addition of pre-anoxic stage to SBR. COD removal efficiency maintained at around 90% regardless of the starvation stress. Starvation stress presented significant impact on nitrogen and phosphorus removal, with noticeable reduction of TN removal and remarkable deterioration of TP removal as prolonging the pre-anoxic time, which was mainly attributed to the integrative effect of carbon source competition, depression of denitrification and invalid P release as well as the variation of microbial community. It was notable that starvation stress exerted distinct evolution on microbial community. The improvement in relative abundance of the certain genera relating to denitrification was the main reason for the partial recovery of nitrogen removal after eliminating stress starvation. The promotion of P uptake capacity accompanied with the relief of invalid P release and the enriched DPAOs accounted for the complete recovery of phosphorus removal.


Asunto(s)
Desnitrificación , Eliminación de Residuos Líquidos , Reactores Biológicos , Nitrógeno/análisis , Nutrientes , Fósforo , Aguas del Alcantarillado
5.
Sci Rep ; 11(1): 22374, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34789761

RESUMEN

We created 3D-reduced graphene oxide/sodium alginate double network (GAD) beads to address the problem of local water pollution by antimony. GAD is a novel material with the high specific surface area of graphene and biosecurity of sodium alginate. Due to the introduction of graphene, the thermal stability and specific surface area of GAD are enhanced, as shown from the FTIR, TGA, BET, Raman, and XRD characterizations. The influence of different environmental variables-such as the pH, dosage, temperature, contact time, and sodium chloride concentration on the Sb(III) sorption with GAD-was investigated. The adsorption results fit well with both the pseudo-second order (R2 > 0.99) and Freundlich (R2 > 0.99) isotherm models. The temperature rise has a negative influence on the adsorption. The Langmuir adsorption capacity is 7.67 mg/g, which is higher than many adsorbents. The GAD results from the fixed-bed adsorption experiment were a good fit with the Thomas model (R2 > 0.99). In addition, GAD appears to be a renewable and ideal adsorbent for the treatment of antimony pollution in aqueous systems.

6.
Materials (Basel) ; 14(19)2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34639878

RESUMEN

In this research, the sustainable applications for utilizing antimony tailing coarse aggregate (ATCA) in concrete is investigated. Comprehensive verifications were performed by a series of experiments on the characteristic of ATCA and the toxicity risks of concrete. Firstly, a real case study of utilization of ATCA as a complete substitute for natural coarse aggregate (NCA) in high strength concrete was conducted. Then, chemical composition of ATCA was tested. It is demonstrated that the essential mineral is SiO2 and the lithology of ATCA is quartzite. The mechanical properties, coarse quality of ATCA, and NCA were studied and compared. The compressive strength, splitting tensile strength, and compressive elastic modulus of ATWR are 221.51 MPa, 5.93 MPa, and 3.33 × 104 MPa, which are 1.31, 2.22, 1.40 times of that of NR, respectively. All of the quality control indices of ATCA meet the requirements of the current industry standards of China. Finally, the toxicity risks of ATCA concrete were investigated. It is illustrated that the leaching of main heavy metals including Sb, As, Hg, Pb, Cd, and Zn in the ATCA concrete under different pH conditions are below the regulatory limits. The utilization of antimony tailing has significant environmental and economic benefits.

7.
Materials (Basel) ; 14(19)2021 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-34640003

RESUMEN

Antimony (Sb) is a trace element applied widely in modern industry. A large number of tailing solid wastes are left and accumulated in the mining area after purifying the precious antimony from the antimony ores, causing serious pollution to the environment. The major aim of this study is to investigate the feasibility of utilizing antimony tailing coarse aggregate (ATCA) as a complete substitute for natural coarse aggregate (NCA) in high-strength concrete. Concrete specimens with 25%, 50%, 75%, and 100% ATCA replacing the NCA in conventional concrete were prepared for evaluating the performance of ATCA concrete. The investigators find that ATCA concrete has good workability, and the mechanical properties and long-term behavior (shrinkage and creep) of ATCA concrete with all replacement levels are superior to those of NCA concrete. The durability indices of ATCA concrete, such as the frost-resistant, chloride permeability, and resistance to carbonation, are better than those of NCA concrete. While the alkali activity and cracking sensitivity behavior of ATCA concrete seem to be decreased, nevertheless, the difference is not significant and can be neglected. The researchers demonstrate that all of the control indices of ATCA concrete meet the requirements of the current industry standards of China. Overall, ATCA can be used in concrete to minimize environmental problems and natural resources depletion.

8.
Front Microbiol ; 12: 738596, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34557178

RESUMEN

Antimony (Sb) is a priority pollutant in many countries and regions due to its chronic toxicity and potential carcinogenicity. Elevated concentrations of Sb in the environmental originating from mining and other anthropogenic sources are of particular global concern, so the prevention and control of the source of pollution and environment remediation are urgent. It is widely accepted that indigenous microbes play an important role in Sb speciation, mobility, bioavailability, and fate in the natural environment. Especially, antimony-oxidizing bacteria can promote the release of antimony from ore deposits to the wider environment. However, it can also oxidize the more toxic antimonite [Sb(III)] to the less-toxic antimonate [Sb(V)], which is considered as a potentially environmentally friendly and efficient remediation technology for Sb pollution. Therefore, understanding its biological oxidation mechanism has great practical significance to protect environment and human health. This paper reviews studies of the isolation, identification, diversity, Sb(III) resistance mechanisms, Sb(III) oxidation characteristics and mechanism and potential application of Sb-oxidizing bacteria. The aim is to provide a theoretical basis and reference for the diversity and metabolic mechanism of Sb-oxidizing bacteria, the prevention and control of Sb pollution sources, and the application of environment treatment for Sb pollution.

9.
Curr Microbiol ; 77(9): 2071-2083, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32474703

RESUMEN

How to effectively remove excess Sb(III) in the water environment by biosorption is receiving close attention in the international scientific community. To obtain the maximum biosorption efficiency, response surface methodology (RSM) was employed to optimize a total of 13 factors for biosorption of Sb(III) onto living Rhodotorula mucilaginosa DJHN070401. The mechanism of biosorption and bioaccumulation was also studied. The results showed that biosorption reached 56.83% under the optimum conditions. Besides, pH, Fe2+, and temperature are significant influencing factors, and control of Ca2+ and Fe2+ has a beneficial impact on Sb(III) biosorption. The characterization explained that physical adsorption occurred readily on the loose and porous surface of DJHN070401 where carboxyl, amidogen, phosphate group, and polysaccharide C-O functional groups facilitated absorption by complexation with Sb(III), accompanied by ion exchange of Na+, Ca2+ ions with Sb(III). It was also noted that the living cell not only improved the removal efficiency in the presence of metabolic inhibitors but also prevented intracellular Sb(III) being re-released into the environment. The results of this study underpin improved and efficient methodology for biosorption of Sb(III) from wastewater.


Asunto(s)
Contaminantes Químicos del Agua , Adsorción , Concentración de Iones de Hidrógeno , Cinética , Rhodotorula , Aguas Residuales , Contaminantes Químicos del Agua/análisis
10.
Environ Sci Pollut Res Int ; 27(19): 23686-23694, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32291644

RESUMEN

Thallium (Tl) has a high relative toxicity and is easily taken up by plants, but little is known about wider relationship with co-contaminants and in typical domestic food crops. We evaluated the extent of contamination, evidence for bioaccumulation in typical food crops (Chinese cabbage, green cabbage, chili, carrot, corn and rice), and subsequent contribution to health risks for 7 elements (Tl, As, Cd, Pb, Ni, Cu, Zn) associated with soil contamination in the local soils of a major Tl mine in Guizhou, southwest China. Derivation of relevant risk indicators from the bioconcentration factor (BCF), comprehensive crop pollution index (P), the target hazard quotient (THQ) (element), and the hazard index (HI) (all elements) were assessed as tools to support the evaluation. Our results showed that the degree of contamination and uptake by crops in the study area were: root vegetables > leaf vegetables > fruit vegetables > cereals. With the exception of corn, other crops pose a significant risk to human health which is dominated by the Tl content. In addition, the Cu in carrot samples suggests hyperaccumulation at the site and poses a high risk to human health. The results provide direct evidence of significant food chain exposure and identifies the need for Tl-focused management of soil/plant interaction and that strategy needs to also understand the implications for behavior of co-contaminants in the area.


Asunto(s)
Metales Pesados/análisis , Contaminantes del Suelo/análisis , China , Monitoreo del Ambiente , Cadena Alimentaria , Humanos , Medición de Riesgo , Suelo , Talio/análisis
11.
Environ Geochem Health ; 42(7): 1965-1976, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31705399

RESUMEN

The pollution from large-scale manganese mining and associated industries in Xiangtan (south Central China) has created a significant burden on the local environment. The proximity of mining, and other industrial activity to the local population, is of concern and impact of past industrial on the food chain was evaluated by the assessment of common food groups (rice, soybean, and sweet potato), and the associated soil and water in the region. We focused on specific potentially toxic elements (PTEs): Mn, Pb, Cd, Cr, Cu, and Zn associated with industrial activity, identifying the distribution of pollution, the potential significance of total health index (THI) for local people and its spatial distribution. The study area showed severe contamination for Mn, followed by Cd and Pb, while other PTEs showed relatively light levels of pollution. When analyzing the impact on crops exceeding the tolerance limit, the dominant PTEs were Mn, Cd, and Pb, with lower significance for Zn, Cu, and Cr. The average THI value for adults is 4.63, while for children, is 5.17, greatly exceeding the recommended limit (HQ > 1), confirming a significant health risk. In the spatial distribution of the THI, the region shows strong association with the transport and industrial processing infrastructure. Long-term management needs to consider remediation aligned to specific industrial operations and enhance contamination control measures of ongoing activity.


Asunto(s)
Productos Agrícolas/química , Metales Pesados/análisis , Contaminantes del Suelo/análisis , Contaminantes Químicos del Agua/análisis , Adulto , Niño , China , Agua Potable/análisis , Monitoreo del Ambiente , Cadena Alimentaria , Contaminación de Alimentos/análisis , Humanos , Industrias , Ipomoea batatas/química , Metales Pesados/toxicidad , Minería , Oryza/química , Medición de Riesgo , Contaminantes del Suelo/toxicidad , Glycine max/química , Contaminantes Químicos del Agua/toxicidad
12.
Sci Rep ; 9(1): 13021, 2019 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-31506559

RESUMEN

A novel adsorbent (Fe3O4/HCO) was prepared via co-precipitation from a mix of ferriferrous oxide and a Ce-rich waste industrial sludge recovered from an optical polishing activity. The effect of system parameters including reaction time, pH, dose, temperature as well as initial concentration on the adsorption of Sb(III) were investigated by sequential batch tests. The Sb(III)/Fe3O4/HCO system quickly reached adsorption equilibrium within 2 h, was effective over a wide pH (3-7) and demonstrated excellent removal at a 60 mg/L Sb(III) concentration. Three isothermal adsorption models were assessed to describe the equilibrium data for Sb(III) with Fe3O4/HCO. Compared to the Freundlich and dubinin-radushkevich, the Langmuir isotherm model showed the best fit, with a maximum adsorption capacity of 22.853 mg/g, which exceeds many comparable absorbents. Four kinetic models, Pseudo-first-order, Pseudo-second-order, Elovich and Intra-particle, were used to fit the adsorption process. The analysis showed that the mechanism was pseudo-second-order and chemical adsorption played a dominant role in the adsorption of Sb(III) by Fe3O4/HCO (correlation coefficient R2 = 0.993). Thermodynamic calculations suggest that adsorption of Sb(III) ions was endothermic, spontaneous and a thermodynamically feasible process. The mechanism of the adsorption of Sb(III) on Fe3O4/HCO could be described by the synergistic adsorption of Sb (III) on Fe3O4, FeCe2O4 and hydrous ceric oxide. The Fe3O4/HCO sorbent appears to be an efficient and environment-friendly material for the removal of Sb(III) from wastewater.

13.
Environ Sci Pollut Res Int ; 26(16): 16556-16567, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30982190

RESUMEN

The exploitation of thallium (Tl) resources through mining poses a significant threat to ecological systems and human health due to its high toxicity and ready assimilation by human body. We report the first assessment of the pollution, spatial distribution, source, and ecological-health risks of potentially toxic elements (PTEs) in Tl mining area of southwest Guizhou, China. Spatial distribution maps for PTEs were visualized by ArcGIS to identify their distribution trends. We use the enrichment factor (EF), correlation analysis, and principal component analysis to identify likely sources of seven PTEs mining area. The wider risk assessment was evaluated using the geoaccumulation index (Igeo), potential ecological risk index (RI), human non-carcinogenic risk (HI), and carcinogenic risk (CR). The results revealed the PTEs content in the study area identifies direct mining, metal production, and domestic pollution sources. In addition, the distribution of PTEs was also affected by the topography, rain water leaching, and river dispersals. The main elements of concern are Tl and As, while Cd, Cr, Cu, Pb, and Zn do not show significant enrichment in the area despite associations with the ore deposit. Risk assessment identifies strong pollution and ecological risks and poses unacceptable human health risks to local residents, especially for children. The ecological risk in the study is identified to be predominantly from Tl (74.32%), followed by As (8.57%) and Cd (7.32%). The contribution of PTEs to the non-carcinogenic risk of humans in the study area is exclusively from As and Tl, while the carcinogenic risk is dominated by As, and the other elements pose no significant risk to human health.


Asunto(s)
Metales Pesados/análisis , Contaminantes del Suelo/análisis , Talio , Niño , China , Ecosistema , Exposición a Riesgos Ambientales/análisis , Monitoreo del Ambiente/métodos , Monitoreo del Ambiente/estadística & datos numéricos , Humanos , Minería , Medición de Riesgo , Ríos
14.
Bioresour Technol ; 271: 332-339, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30292132

RESUMEN

A membrane electro-bioreactor (MEBR) embracing biological treatment, electrokinetic phenomena and membrane filtration was established by applying intermittent direct current (DC) to MBR. MEBR exhibited significant improvement of treatment performance and reduction of membrane fouling. COD and total phenols removal efficiencies increased to 83.53% and 93.28% at an exposure mode of 24'-OFF/6'-ON, compared to 71.24% and 82.43% in MBR. Trans-membrane pressure increment rate declined dramatically in MEBR, which was mainly attributed to the increase of sludge floc size and decrease of zeta potential, soluble microbial products and specific resistance to filtration, resulted from electrokinetic effects such as electrocoagulation, electrophoresis, electroosmosis and electromigration of ions. It was notable that DC exposure exerted distinct evolution on microbial community, with the improvement of microbial community richness and diversity. The relative abundances of functional genera were promoted noticeably in MEBR. An interactive relevance existed among microbial community structure, mixed liquor properties and operational parameters.


Asunto(s)
Reactores Biológicos , Carbón Mineral , Aguas Residuales/química , Industria Química , Electricidad , Filtración/métodos , Fenoles/química , Aguas del Alcantarillado , Eliminación de Residuos Líquidos/instrumentación , Eliminación de Residuos Líquidos/métodos
15.
Water Sci Technol ; 76(9-10): 2350-2356, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29144293

RESUMEN

A novel type of catalytic particle electrode (SAC-Fe) was developed from sewage sludge and iron sludge via a facile method. The catalytic particle electrodes (CPEs) were also supposed to be heterogeneous catalyst for electro-Fenton (EF). The CPEs were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). SAC-Fe showed superior porous structure and higher adsorption capacity and catalytic activity than Fe3O4 magnetic nanoparticles. Catechol and total organic carbon (TOC) removal efficiency can reach 96.7% and 88.3% after three-dimensional (3D) EF with SAC-Fe as CPEs. A possible mechanism was deduced based on adsorption tests and radicals detection. Meanwhile, the stability and reusability of the CPEs were evaluated.


Asunto(s)
Técnicas Electroquímicas/métodos , Hierro/química , Aguas del Alcantarillado/química , Contaminantes Químicos del Agua/química , Adsorción , Catálisis , Técnicas Electroquímicas/instrumentación , Electrodos , Difracción de Rayos X
16.
J Anal Methods Chem ; 2017: 7206876, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28804669

RESUMEN

We aimed to study the characteristics and the mechanism of the cumulative release of antimony at an antimony smelting slag stacking area in southern China. A series of dynamic and static leaching experiments to simulate the effects of rainfall were carried out. The results showed that the release of antimony from smelting slag increased with a decrease in the solid-liquid ratio, and the maximum accumulated release was found to be 42.13 mg Sb/kg waste and 34.26 mg Sb/kg waste with a solid/liquid ratio of 1 : 20; the maximum amount of antimony was released within 149-420 µm size fraction with 7.09 mg/L of the cumulative leaching. Also, the antimony release was the greatest and most rapid at pH 7.0 with the minimum release found at pH 4.0. With an increase in rainfall duration, the antimony release increased. The influence of variation in rainfall intensity on the release of antimony from smelting slag was small.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...