Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 284: 116914, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39182281

RESUMEN

Selenium nanoparticles (SeNPs) have been used as a potential alternative to other forms of selenium in nutritional supplements for the treatment and prevention of inflammatory and oxidative stress-related diseases. Zearalenone (ZEA) is a foodborne mycotoxin present in grains that poses a health threat. Here, we investigated the adverse impacts of ZEA on intestinal homeostasis and explored the protective effects of probiotic-synthesized SeNPs against its damage. Results showed that ZEA reduced mucin and tight junction proteins expression in jejunum, induced inflammatory process and oxidative stress which in turn increased intestinal permeability in mice. ZEA-induced intestinal toxicity was further verified in vitro. Intracellular redox imbalance triggered endoplasmic reticulum (ER) stress in intestinal epithelial cells, which caused structural damage to the ER. Remarkably, SeNPs exhibited a counteractive effect by inducing a decrease in intracellular levels of Inositol 1,4,5-trisphosphate (IP3) and Ca2+, along with a reduction in the expression level of IP3 receptor. SeNPs effectively mitigated ZEA-induced ER stress was related to the increased activity of selenium-dependent antioxidant enzymes and the expression of ER-resident selenoproteins. Furthermore, SeNPs significantly inhibited the activation of PERK/eIF2α/ATF4/CHOP pathway in vitro and in vivo. In addition, SeNPs effectively reversed ZEA-induced gut microbiota dysbiosis and increased the abundance of short-chain fatty acid-producing beneficial bacteria (Alloprevotella and Muribaculaceae). The Spearman correlation analysis suggested that the structure of gut microbiota was closely related to the SeNPs attenuation of ZEA-induced intestinal toxicity. This study provides new insights into ZEA-induced intestinal toxicity and identifies a novel potential nutrient SeNPs to overcome adverse effects.

2.
Biomed Pharmacother ; 175: 116740, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38749178

RESUMEN

Intestinal diseases often stem from a compromised intestinal barrier. This barrier relies on a functional epithelium and proper turnover of intestinal cells, supported by mitochondrial health. Mitochondria and lysosomes play key roles in cellular balance. Our previous researches indicate that biogenic selenium nanoparticles (SeNPs) can alleviate intestinal epithelial barrier damage by enhancing mitochondria-lysosome crosstalk, though the detailed mechanism is unclear. This study aimed to investigate the role of mitochondria-lysosome crosstalk in the protective effect of SeNPs on intestinal barrier function in mice exposed to lipopolysaccharide (LPS). The results showed that LPS exposure increased intestinal permeability in mice, leding to structural and functional damage to mitochondrial and lysosomal. Oral administration of SeNPs significantly upregulated the expression levels of TBC1D15 and Fis1, downregulated the expression levels of Rab7, Caspase-3, Cathepsin B, and MCOLN2, effectively alleviated LPS-induced mitochondrial and lysosomal dysfunction and maintained the intestinal barrier integrity in mice. Furthermore, SeNPs notably inhibited mitophagy caused by adenovirus-associated virus (AAV)-mediated RNA interference the expression of TBC1D15 in the intestine of mice, maintained mitochondrial and lysosomal homeostasis, and effectively alleviated intestinal barrier damage. These results suggested that SeNPs can regulate mitochondria-lysosome crosstalk and inhibit its damage by regulating the TBC1D15/Fis1/Rab7- signaling pathway. thereby alleviating intestinal barrier damage. It lays a theoretical foundation for elucidating the mechanism of mitochondria-lysosome crosstalk in regulating intestinal barrier damage and repair, and provides new ideas and new ways to establish safe and efficient nutritional regulation strategies to prevent and treat intestinal diseases caused by inflammation.


Asunto(s)
Proteínas Activadoras de GTPasa , Mucosa Intestinal , Lisosomas , Mitocondrias , Proteínas Mitocondriales , Nanopartículas , Selenio , Transducción de Señal , Proteínas de Unión al GTP rab , Proteínas de Unión a GTP rab7 , Animales , Selenio/farmacología , Nanopartículas/química , Ratones , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas Activadoras de GTPasa/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Masculino , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de la Membrana/metabolismo , Lipopolisacáridos , Ratones Endogámicos C57BL , Permeabilidad/efectos de los fármacos
3.
Biopolymers ; 89(11): 1045-53, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18655143

RESUMEN

Resonance Raman spectra are reported for substrate-free and camphor-bound cytochrome P450cam and its isotopically labeled analogues that have been reconstituted with protoheme derivatives that bear -CD(3) groups at the 1, 3, 5, and 8-positions (d12-protoheme) or deuterated methine carbons (d4-protoheme). In agreement with previous studies of this and similar enzymes, substrate binding induces changes in the high frequency and low frequency spectral regions, with the most dramatic effect in the low frequency region being activation of a new mode near 367 cm(-1). This substrate-activated mode had been previously assigned as a second "propionate bending" mode (Chen et al., Biochemistry, 2004, 43, 1798-1808), arising in addition to the single propionate bending mode observed for the substrate-free form at 380 cm(-1). In this work, this newly activated mode is observed to shift by 8 cm(-1) to lower frequency in the d12-protoheme reconstituted enzyme (i.e., the same shift as that observed for the higher frequency "propionate bending" mode) and is therefore consistent with the suggested assignment. However, the newly acquired data for the d4-protoheme substituted analogue also support an earlier alternate suggestion (Deng et al., Biochemistry, 1999, 38, 13699-13706) that substrate binding activates several heme out-of-plane modes, one of which (gamma(6)) is accidentally degenerate with the 367 cm(-1) propionate bending mode. Finally, the study of the enzyme reconstituted with the protoheme-d4, which shifts the macrocycle nu(10) mode, has now allowed a definitive identification of the vinyl C=C stretching modes.


Asunto(s)
Proteínas Bacterianas/química , Sistema Enzimático del Citocromo P-450/química , Pseudomonas putida/enzimología , Espectrometría Raman/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA