Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Intervalo de año de publicación
1.
Neural Regen Res ; 18(9): 1999-2004, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36926725

RESUMEN

Animal experiments have shown that injectable collagen scaffold with human umbilical cord-derived mesenchymal stem cells can promote recovery from spinal cord injury. To investigate whether injectable collagen scaffold with human umbilical cord-derived mesenchymal stem cells can be used to treat spontaneous intracerebral hemorrhage, this non-randomized phase I clinical trial recruited patients who met the inclusion criteria and did not meet the exclusion criteria of spontaneous intracerebral hemorrhage treated in the Characteristic Medical Center of Chinese People's Armed Police Force from May 2016 to December 2020. Patients were divided into three groups according to the clinical situation and patient benefit: control (n = 18), human umbilical cord-derived mesenchymal stem cells (n = 4), and combination (n = 8). The control group did not receive any transplantation. The human umbilical cord-derived mesenchymal stem cells group received human umbilical cord-derived mesenchymal stem cell transplantation. The combination group received injectable collagen scaffold with human umbilical cord-derived mesenchymal stem cells. Patients who received injectable collagen scaffold with human umbilical cord-derived mesenchymal stem cells had more remarkable improvements in activities of daily living and cognitive function and smaller foci of intracerebral hemorrhage-related encephalomalacia. Severe adverse events associated with cell transplantation were not observed. Injectable collagen scaffold with human umbilical cord-derived mesenchymal stem cells appears to have great potential treating spontaneous intracerebral hemorrhage.

2.
Artículo en Inglés | MEDLINE | ID: mdl-36285159

RESUMEN

Objective: YuPingFeng Granules (YPFGs) is an herbal formula clinically used in China for more than 100 years to treat pneumonia. Nevertheless, the mechanism of YPFG in pneumonia treatment has not been established. This network pharmacology-based strategy has been performed to elucidate active compounds as well as mechanisms of YPFG in pneumonia treatment. Methods: First, active compounds of YPFG were identified in the traditional Chinese medicine systems pharmacology (TCMSP) database, and then the targets related to the active compounds were obtained from TCMSP and Swiss Target Prediction databases. Next, using DisGeNET, DrugBank, and GeneCards databases, we got therapeutic targets of pneumonia and common targets between pneumonia targets and YPFG. After that, a protein-protein interaction (PPI) network of pneumonia composed of common targets was built to analyze the interactions among these targets, which focused on screening for hub targets by topology. Then, online software and the ClusterProfiler package were utilized for the enrichment analysis of gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) data. Finally, the visualization software of Autodock was used for molecular docking among the hub target proteins. Results: 10 hub genes were selected by comparing the GO and KEGG functions of pneumonia targets with those of the common targets of YPFG and pneumonia. By using molecular docking technology, a total of 3 active ingredients have been verified as being able to combine closely with 6 hub targets and contribute to their therapeutic effects. Conclusion: This research explored the multigene pharmacological mechanism of action of YPFG against pneumonia through network pharmacology. The findings present new ideas for studying the mechanism of action of Chinese medicine against pneumonia caused by bacteria.

3.
BMC Pulm Med ; 22(1): 246, 2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35751045

RESUMEN

BACKGROUND: Cyclin-dependent kinase inhibitor 2C (CDKN2C) was identified to participate in the occurrence and development of multiple cancers; however, its roles in small cell lung carcinoma (SCLC) remain unclear. METHODS: Differential expression analysis of CDKN2C between SCLC and non-SCLC were performed based on 937 samples from multiple centers. The prognosis effects of CDKN2C in patients with SCLC were detected using both Kaplan-Meier curves and log-rank tests. Using receiver-operating characteristic curves, whether CDKN2C expression made it feasible to distinguish SCLC was determined. The potential mechanisms of CDKN2C in SCLC were investigated by gene ontology terms and signaling pathways (Kyoto Encyclopedia of Genes and Genomes). Based on 10,080 samples, a pan-cancer analysis was also performed to determine the roles of CDKN2C in multiple cancers. RESULTS: For the first time, upregulated CDKN2C expression was detected in SCLC samples at both the mRNA and protein levels (p of Wilcoxon rank-sum test < 0.05; standardized mean difference = 2.86 [95% CI 2.20-3.52]). Transcription factor FOXA1 expression may positively regulate CDKN2C expression levels in SCLC. High CDKN2C expression levels were related to the poor prognosis of patients with SCLC (hazard ratio > 1, p < 0.05) and showed pronounced effects for distinguishing SCLC from non-SCLC (sensitivity, specificity, and area under the curve ≥ 0.95). CDKN2C expression may play a role in the development of SCLC by affecting the cell cycle. Furthermore, the first pan-cancer analysis revealed the differential expression of CDKN2C in 16 cancers (breast invasive carcinoma, etc.) and its independent prognostic significance in nine cancers (e.g., adrenocortical carcinoma). CDKN2C expression was related to the immune microenvironment, suggesting its potential usefulness as a prognostic marker in immunotherapy. CONCLUSIONS: This study identified upregulated CDKN2C expression and its clinical significance in SCLC and other multiple cancers, suggesting its potential usefulness as a biomarker in treating and differentiating cancers.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Inhibidor p18 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p18 de las Quinasas Dependientes de la Ciclina/metabolismo , Humanos , Neoplasias Pulmonares/patología , Pronóstico , Carcinoma Pulmonar de Células Pequeñas/patología , Microambiente Tumoral
4.
J Oncol ; 2022: 2010341, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35356257

RESUMEN

The clinical progression of small-cell lung cancer (SCLC) remains pessimistic. The aim of the present study was to promote the understanding of the clinical significance and mechanism of O-linked N-acetylglucosamine (GlcNAc) transferase (OGT) in SCLC. Wilcoxon tests, standardized mean difference (SMD), and Kruskal-Wallis tests were utilized to compare OGT level differences among the experimental and control groups. The univariate Cox regression analysis, Kaplan-Meier curves, and receiver operating characteristic curves were applied to determine OGT's clinical relevance in cancers. The Spearman correlation analysis and enrichment analysis were utilized to explore the underlying mechanisms of OGT in cancers. For the first time in the field, we provide an overview of OGT in 32 cancers using a large number of samples (n = 21,196), determining distinct OGT expression in 25 cancers and its prognosis effects in 12 cancers. Furthermore, using 950 samples from multiple sources, upregulated OGT was found in both mRNA and protein levels in SCLC (SMD = 0.93, 95% CI [0.24, 1.63]). Higher OGT levels represented a more unfavorable disease-free interval for SCLC patients (p < 0.001). The research also identified OGT expression as a potential marker for SCLC prediction (sensitivity = 0.79, specificity = 0.86, and AUC = 0.88). The high expression of OGT in SCLC may result from the positive regulation of two transcription factors-DEK and XRN2. We primarily investigated the underlying mechanisms of OGT in SCLC. Herein, based on the analyses from pan-cancer to SCLC, OGT demonstrated conspicuous clinical significance. OGT may be an underlying biomarker for the treatment and identification of some cancers, including SCLC.

5.
Rev Assoc Med Bras (1992) ; 67(9): 1342-1348, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34816932

RESUMEN

OBJECTIVE: This study aimed to assess the effect of the collagen/silk fibroin scaffolds seeded with human umbilical cord-mesenchymal stem cells on functional recovery after acute complete spinal cord injury. METHODS: The fibroin and collagen were mixed (mass ratio, 3:7), and the composite scaffolds were produced. Forty rats were randomly divided into the Sham group (without spinal cord injury), spinal cord injury group (spinal cord transection without any implantation), collagen/silk fibroin scaffolds group (spinal cord transection with implantation of the collagen/silk fibroin scaffolds), and collagen/silk fibroin scaffolds + human umbilical cord-mesenchymal stem cells group (spinal cord transection with the implantation of the collagen/silk fibroin scaffolds co-cultured with human umbilical cord-mesenchymal stem cells). Motor evoked potential, Basso-Beattie-Bresnahan scale, modified Bielschowsky's silver staining, and immunofluorescence staining were performed. RESULTS: The BBB scores in the collagen/silk fibroin scaffolds + human umbilical cord-mesenchymal stem cells group were significantly higher than those in the spinal cord injury and collagen/silk fibroin scaffolds groups (p<0.05 or p<0.01). The amplitude and latency were markedly improved in the collagen/silk fibroin scaffolds + human umbilical cord-mesenchymal stem cells group compared with the spinal cord injury and collagen/silk fibroin scaffolds groups (p<0.05 or p<0.01). Meanwhile, compared to the spinal cord injury and collagen/silk fibroin scaffolds groups, more neurofilament positive nerve fiber ensheathed by myelin basic protein positive structure at the injury site were observed in the collagen/silk fibroin scaffolds + human umbilical cord-mesenchymal stem cells group (p<0.01, p<0.05). The results of Bielschowsky's silver staining indicated more nerve fibers was observed at the lesion site in the collagen/silk fibroin scaffolds + human umbilical cord-mesenchymal stem cells group compared with the spinal cord injury and collagen/silk fibroin scaffolds groups (p<0.01, p< 0.05). CONCLUSION: The results demonstrated that the transplantation of human umbilical cord-mesenchymal stem cells on a collagen/silk fibroin scaffolds could promote nerve regeneration, and recovery of neurological function after acute spinal cord injury.


Asunto(s)
Fibroínas , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Traumatismos de la Médula Espinal , Animales , Colágeno , Humanos , Ratas , Recuperación de la Función , Médula Espinal , Andamios del Tejido , Cordón Umbilical
6.
Rev. Assoc. Med. Bras. (1992) ; 67(9): 1342-1348, Sept. 2021. graf
Artículo en Inglés | LILACS | ID: biblio-1351459

RESUMEN

SUMMARY OBJECTIVE: This study aimed to assess the effect of the collagen/silk fibroin scaffolds seeded with human umbilical cord-mesenchymal stem cells on functional recovery after acute complete spinal cord injury. METHODS: The fibroin and collagen were mixed (mass ratio, 3:7), and the composite scaffolds were produced. Forty rats were randomly divided into the Sham group (without spinal cord injury), spinal cord injury group (spinal cord transection without any implantation), collagen/silk fibroin scaffolds group (spinal cord transection with implantation of the collagen/silk fibroin scaffolds), and collagen/silk fibroin scaffolds + human umbilical cord-mesenchymal stem cells group (spinal cord transection with the implantation of the collagen/silk fibroin scaffolds co-cultured with human umbilical cord-mesenchymal stem cells). Motor evoked potential, Basso-Beattie-Bresnahan scale, modified Bielschowsky's silver staining, and immunofluorescence staining were performed. RESULTS: The BBB scores in the collagen/silk fibroin scaffolds + human umbilical cord-mesenchymal stem cells group were significantly higher than those in the spinal cord injury and collagen/silk fibroin scaffolds groups (p<0.05 or p<0.01). The amplitude and latency were markedly improved in the collagen/silk fibroin scaffolds + human umbilical cord-mesenchymal stem cells group compared with the spinal cord injury and collagen/silk fibroin scaffolds groups (p<0.05 or p<0.01). Meanwhile, compared to the spinal cord injury and collagen/silk fibroin scaffolds groups, more neurofilament positive nerve fiber ensheathed by myelin basic protein positive structure at the injury site were observed in the collagen/silk fibroin scaffolds + human umbilical cord-mesenchymal stem cells group (p<0.01, p<0.05). The results of Bielschowsky's silver staining indicated more nerve fibers was observed at the lesion site in the collagen/silk fibroin scaffolds + human umbilical cord-mesenchymal stem cells group compared with the spinal cord injury and collagen/silk fibroin scaffolds groups (p<0.01, p< 0.05). CONCLUSION: The results demonstrated that the transplantation of human umbilical cord-mesenchymal stem cells on a collagen/silk fibroin scaffolds could promote nerve regeneration, and recovery of neurological function after acute spinal cord injury.


Asunto(s)
Humanos , Animales , Ratas , Traumatismos de la Médula Espinal , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Fibroínas , Médula Espinal , Cordón Umbilical , Colágeno , Recuperación de la Función , Andamios del Tejido
7.
J Orthop Surg (Hong Kong) ; 29(2): 23094990211012293, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34060363

RESUMEN

BACKGROUND: Due to endogenous neuronal deficiency and glial scar formation, spinal cord injury (SCI) often leads to irreversible neurological loss. Accumulating evidence has shown that a suitable scaffold has important value for promoting nerve regeneration after SCI. Collagen/heparin sulfate scaffold (CHSS) has shown effect for guiding axonal regeneration and decreasing glial scar deposition after SCI. The current research aimed to evaluate the utility of the CHSSs adsorbed with mesenchymal stem cells (MSCs) on nerve regeneration, and functional recovery after acute complete SCI. METHODS: CHSSs were prepared, and evaluated for biocompatibility. The CHSSs adsorbed with MSCs were transplanted into these canines with complete SCI. RESULTS: We observed that MSCs had good biocompatibility with CHSSs. In complete transverse SCI models, the implantation of CHSS co-cultured with MSCs exhibited significant improvement in locomotion, motor evoked potential, magnetic resonance imaging, diffusion tensor imaging, and urodynamic parameters. Meanwhile, nerve fibers were markedly improved in the CHSS adsorbed with MSCs group. Moreover, we observed that the implantation of CHSS combined with MSCs modulated inflammatory cytokine levels. CONCLUSIONS: The results preliminarily demonstrated that the transplantation of MSCs on a CHSS could improve the recovery of motor function after SCI. Thus, implanting the MSCs-laden CHSS is a promising combinatorial therapy for treatment in acute SCI.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Traumatismos de la Médula Espinal , Andamios del Tejido , Animales , Colágeno , Imagen de Difusión Tensora , Perros , Estudios de Factibilidad , Heparina , Trasplante de Células Madre Mesenquimatosas/veterinaria , Traumatismos de la Médula Espinal/terapia , Traumatismos de la Médula Espinal/veterinaria , Sulfatos
8.
Neural Regen Res ; 16(6): 1068-1077, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33269752

RESUMEN

One reason for the poor therapeutic effects of stem cell transplantation in traumatic brain injury is that exogenous neural stem cells cannot effectively migrate to the local injury site, resulting in poor adhesion and proliferation of neural stem cells at the injured area. To enhance the targeted delivery of exogenous stem cells to the injury site, cell therapy combined with neural tissue engineering technology is expected to become a new strategy for treating traumatic brain injury. Collagen/heparan sulfate porous scaffolds, prepared using a freeze-drying method, have stable physical and chemical properties. These scaffolds also have good cell biocompatibility because of their high porosity, which is suitable for the proliferation and migration of neural stem cells. In the present study, collagen/heparan sulfate porous scaffolds loaded with neural stem cells were used to treat a rat model of traumatic brain injury, which was established using the controlled cortical impact method. At 2 months after the implantation of collagen/heparan sulfate porous scaffolds loaded with neural stem cells, there was significantly improved regeneration of neurons, nerve fibers, synapses, and myelin sheaths in the injured brain tissue. Furthermore, brain edema and cell apoptosis were significantly reduced, and rat motor and cognitive functions were markedly recovered. These findings suggest that the novel collagen/heparan sulfate porous scaffold loaded with neural stem cells can improve neurological function in a rat model of traumatic brain injury. This study was approved by the Institutional Ethics Committee of Characteristic Medical Center of Chinese People's Armed Police Force, China (approval No. 2017-0007.2) on February 10, 2019.

9.
Neural Regen Res ; 15(9): 1686-1700, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32209773

RESUMEN

Currently, there is no effective strategy to promote functional recovery after a spinal cord injury. Collagen scaffolds can not only provide support and guidance for axonal regeneration, but can also serve as a bridge for nerve regeneration at the injury site. They can additionally be used as carriers to retain mesenchymal stem cells at the injury site to enhance their effectiveness. Hence, we hypothesized that transplanting human umbilical cord-mesenchymal stem cells on collagen scaffolds would enhance healing following acute complete spinal cord injury. Here, we test this hypothesis through animal studies and a phase I clinical trial. (1) Animal experiments: Models of completely transected spinal cord injury were established in rats and canines by microsurgery. Mesenchymal stem cells derived from neonatal umbilical cord tissue were adsorbed onto collagen scaffolds and surgically implanted at the injury site in rats and canines; the animals were observed after 1 week-6 months. The transplantation resulted in increased motor scores, enhanced amplitude and shortened latency of the motor evoked potential, and reduced injury area as measured by magnetic resonance imaging. (2) Phase I clinical trial: Forty patients with acute complete cervical injuries were enrolled at the Characteristic Medical Center of Chinese People's Armed Police Force and divided into two groups. The treatment group (n = 20) received collagen scaffolds loaded with mesenchymal stem cells derived from neonatal umbilical cord tissues; the control group (n = 20) did not receive the stem-cell loaded collagen implant. All patients were followed for 12 months. In the treatment group, the American Spinal Injury Association scores and activities of daily life scores were increased, bowel and urinary functions were recovered, and residual urine volume was reduced compared with the pre-treatment baseline. Furthermore, magnetic resonance imaging showed that new nerve fiber connections were formed, and diffusion tensor imaging showed that electrophysiological activity was recovered after the treatment. No serious complication was observed during follow-up. In contrast, the neurological functions of the patients in the control group were not improved over the follow-up period. The above data preliminarily demonstrate that the transplantation of human umbilical cord-mesenchymal stem cells on a collagen scaffold can promote the recovery of neurological function after acute spinal cord injury. In the future, these results need to be confirmed in a multicenter, randomized controlled clinical trial with a larger sample size. The clinical trial was approved by the Ethics Committee of the Characteristic Medical Center of Chinese People's Armed Police Force on February 3, 2016 (approval No. PJHEC-2016-A8). All animal experiments were approved by the Ethics Committee of the Characteristic Medical Center of Chinese People's Armed Police Force on May 20, 2015 (approval No. PJHEC-2015-D5).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...