Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
1.
Ecotoxicol Environ Saf ; 281: 116618, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38944011

RESUMEN

BACKGROUND: Gastric cancer is a leading cause of cancer-related deaths influenced by both genetic and environmental factors. Triphenyl phosphate (TPP) is a prevalent flame retardant, but its health implications remain to be thoroughly understood. OBJECTIVE: To explore the link between TPP exposure and gastric cancer by examining gene expression patterns and developing a predictive model. METHODS: Gene expression data were sourced from The Cancer Genome Atlas (TCGA) and the Comparative Toxicogenomics Database (CTD). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were employed for analysis. Single-sample Gene Set Enrichment Analysis (ssGSEA) was used to obtain phosphate flame retardant-related scores. A predictive model was constructed through differential analysis, univariate COX regression, and LASSO regression. Molecular docking was performed to assess protein interactions with TPP. RESULTS: ssGSEA identified scores related to phosphate flame retardants in gastric cancer, which had a strong association with immune-related traits. Several genes associated with TPP were identified and used to develop a prognostic model that has clinical significance. Molecular docking showed a high binding affinity of TPP with MTTP, a gene related to lipid metabolism. Pathway analysis indicated that TPP exposure contributes to gastric cancer through lipid metabolic processes. CONCLUSION: The study establishes a potential correlation between TPP exposure and gastric cancer onset, pinpointing key genes and pathways involved. This underscores the significance of environmental factors in gastric cancer research and presents a potential diagnostic tool for clinical application.

2.
Cell Biol Int ; 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38825780

RESUMEN

Ferroptosis is a novel form of programmed cell death and is considered to be a druggable target for colorectal cancer (CRC) therapy. However, the role of ferroptosis in CRC and its underlying mechanism are not fully understood. In the present study we found that a protein enriched in the Golgi apparatus, Golgi phosphoprotein 3 (GOLPH3), was overexpressed in human CRC tissue and in several CRC cell lines. The expression of GOLPH3 was significantly correlated with the expression of ferroptosis-related genes in CRC. The overexpression of GOLPH3 in Erastin-induced Caco-2 CRC cells reduced ferroptotic phenotypes, whereas the knockdown of GOLPH3 potentiated ferroptosis in HT-29 CRC cells. GOLPH3 induced the expression of prohibitin-1 (PHB1) and prohibitin-2 (PHB2), which also inhibited ferroptosis in Erastin-treated CRC cells. Moreover, GOLPH3 interacted with PHB2 and nuclear factor erythroid 2-related factor 2 (NRF2) in Caco-2 cells. These observations indicate that GOLPH3 is a negative regulator of ferroptosis in CRC cells. GOLPH3 protects these cells from ferroptosis by inducing the expression of PHB1 and PHB2, and by interacting with PHB2 and NRF2.

3.
Front Pharmacol ; 15: 1337883, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38828452

RESUMEN

Background: The interaction between environmental endocrine-disrupting chemicals, such as Bisphenol A (BPA), and their influence on cancer progression, particularly regarding the GOLPH3 gene in colorectal cancer, remains unclear. Methods: We performed an integrated analysis of transcriptional profiling, clinical data, and bioinformatics analyses utilizing data from the Comparative Toxicogenomics Database and The Cancer Genome Atlas. The study employed ClueGO, Gene Set Enrichment Analysis, and Gene Set Variation Analysis for functional enrichment analysis, alongside experimental assays to examine the effects of BPA exposure on colorectal cancer cell lines, focusing on GOLPH3 expression and its implications for cancer progression. Results: Our findings demonstrated that BPA exposure significantly promoted the progression of colorectal cancer by upregulating GOLPH3, which in turn enhanced the malignant phenotype of colorectal cancer cells. Comparative analysis revealed elevated GOLPH3 protein levels in cancerous tissues versus normal tissues, with single-cell analysis indicating widespread GOLPH3 presence across various cell types in the cancer microenvironment. GOLPH3 was also associated with multiple carcinogenic pathways, including the G2M checkpoint. Furthermore, our investigation into the colorectal cancer microenvironment and genomic mutation signature underscored the oncogenic potential of GOLPH3, exacerbated by BPA exposure. Conclusion: This study provides novel insights into the complex interactions between BPA exposure and GOLPH3 in the context of colorectal cancer, emphasizing the need for heightened awareness and measures to mitigate BPA exposure risks. Our findings advocate for further research to validate these observations in clinical and epidemiological settings and explore potential therapeutic targets within these pathways.

4.
J Asian Nat Prod Res ; : 1-17, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38829012

RESUMEN

Spirotryprostatins are representative members of medicinally interesting bioactive molecules of the spirooxindole natural products. In this communication, we present a novel enantioselective total synthesis of the spirooxindole alkaloid dihydrospirotryprostatin B. The synthesis takes advantage of copper-catalyzed tandem reaction of o-iodoanilide chiral sulfinamide derivatives with alkynone to rapidly construct the key quaternary carbon stereocenter of the natural product dihydrospirotryprostatin B.

5.
Biochem Pharmacol ; 225: 116274, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38735445

RESUMEN

GOLPH3 has been identified as an oncoprotein, playing a crucial role on progression and chemoresistancein of colon adenocarcinoma (COAD). However, it is still unclear the regulation of GOLPH3 expression at protein level. We discovered ubiquitin-specific proteases 6 (USP6) directly regulated the deubiquitination of the GOLPH3 protein and enhanced its stability in COAD. Overexpression of USP6 promoted COAD cell viability, inhibited apoptosis, and accelerated the growth of transplanted tumors growth in vitro and in vivo by deubiquitinating GOLPH3. Additionally, circCYFIP2 showed high expression levels in DDP-resistant colon cancer cells, promoting the cell proliferation. Mechanically, circCYFIP2 binds to both GOLPH3 protein and USP6, strengthening the interaction between GOLPH3 and USP6, and consequently induced DDP resistance in vitro and in vivo. In conclusion, USP6 operates as a deubiquitinase, targeting the GOLPH3 protein in COAD and enhancing its stability. Meanwhile, circCYFIP2 is crucial for the deubiquitination of GOLPH3 protein mediated by USP6 and acts as a scaffold to confer platinum resistance. The discovery of circCYFIP2/USP6/GOLPH3 pathway offers a potential target for overcoming chemoresistance in COAD.


Asunto(s)
Neoplasias del Colon , Resistencia a Antineoplásicos , Proteínas de la Membrana , Ubiquitina Tiolesterasa , Ubiquitinación , Animales , Humanos , Masculino , Ratones , Antineoplásicos/farmacología , Línea Celular Tumoral , Cisplatino/farmacología , Neoplasias del Colon/metabolismo , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/patología , Neoplasias del Colon/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/fisiología , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Ratones Endogámicos BALB C , Ratones Desnudos , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina Tiolesterasa/genética , Ubiquitinación/efectos de los fármacos
6.
Discov Oncol ; 15(1): 193, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38806777

RESUMEN

BACKGROUND: 5-fluorouracil (5-FU) is conventionally used in chemotherapy for colon adenocarcinomas. Acquired resistance of 5-FU remains a clinical challenge in colon cancer, and efforts to develop targeted agents to reduce resistance have not yielded success. Protosappanin B (PSB), the main component of Lignum Sappan extract, is known to exhibit anti-tumor effects. However, whether and how PSB could improve 5-FU resistance in colon cancer have not yet been established. In this study, we aimed to explore the effects and underlying mechanisms of PSB in 5-FU-induced chemoresistance in colon adenocarcinoma. METHODS: Forty-seven paired colon cancer tissue samples from patients who received 5-FU chemotherapy were collected as clinical samples. Two 5-FU resistant colon cancer cell lines were established for in vitro experiments. Reverse transcription-quantitative PCR (RT-qPCR) was performed to determine the mRNA and microRNA (miRNA) expression levels in colon adenocarcinoma tissues and cell lines. Cell Counting Kit-8 (CCK-8) and flow cytometry assays were performed to evaluate cell proliferation and apoptosis, respectively. RESULTS: LINC00612 was highly expressed in colon adenocarcinoma samples and 5-FU resistant colon cancer cells. LINC00612 knockdown enhances 5-FU chemosensitivity in 5-FU resistant cells. Notably, PSB treatment attenuated LINC00612 expression in 5-FU resistant colon adenocarcinoma cells. Moreover, PSB treatment reversed the increase in LINC00612-induced 5-FU resistance. Mechanistically, LINC00612 specifically bound to miR-590-3p, which promoted 5-FU resistance in colon adenocarcinoma cells and attenuated the inhibitory effect of LINC00612 on GOLPH3 expression. CONCLUSION: PSB attenuates 5-FU chemoresistance in colon adenocarcinoma by regulating the LINC00612/miRNA-590-3p/GOLPH3 axis.

7.
Curr Med Sci ; 44(2): 298-308, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38619682

RESUMEN

OBJECTIVE: In B-cell acute lymphoblastic leukemia (B-ALL), current intensive chemotherapies for adult patients fail to achieve durable responses in more than 50% of cases, underscoring the urgent need for new therapeutic regimens for this patient population. The present study aimed to determine whether HZX-02-059, a novel dual-target inhibitor targeting both phosphatidylinositol-3-phosphate 5-kinase (PIKfyve) and tubulin, is lethal to B-ALL cells and is a potential therapeutic for B-ALL patients. METHODS: Cell proliferation, vacuolization, apoptosis, cell cycle, and in-vivo tumor growth were evaluated. In addition, Genome-wide RNA-sequencing studies were conducted to elucidate the mechanisms of action underlying the anti-leukemia activity of HZX-02-059 in B-ALL. RESULTS: HZX-02-059 was found to inhibit cell proliferation, induce vacuolization, promote apoptosis, block the cell cycle, and reduce in-vivo tumor growth. Downregulation of the p53 pathway and suppression of the phosphoinositide 3-kinase (PI3K)/AKT pathway and the downstream transcription factors c-Myc and NF-κB were responsible for these observations. CONCLUSION: Overall, these findings suggest that HZX-02-059 is a promising agent for the treatment of B-ALL patients resistant to conventional therapies.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras , Tubulina (Proteína) , Humanos , Proliferación Celular , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/farmacología , Moduladores de Tubulina/uso terapéutico
8.
Clin Exp Metastasis ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38568295

RESUMEN

Central lymph node metastasis (CLNM) of papillary thyroid carcinoma (PTC) is common. In our study, we built a nomogram to predict CLNM. We retrospectively analyzed 1,392 PTC patients. This group of patients was divided into a training cohort (including 1,009 patients) and a validation cohort (including 383 patients). Analyses of the correlation between inflammatory indicators, ultrasonic characteristics, pathological characteristics and CLNM were conducted. In the training cohort and validation cohort, the metastatic rates of CLNM were 60.16% and 64.23%, respectively. Univariate and multivariate logistic regression analyses demonstrated that Hashimoto's thyroiditis (HT), calcification, multifocality, capsule invasion, PLR (platelet-lymphocyte ratio) ≤ 130.34, large tumors and middle and lower positions were independent risk factors for CLNM. Then, we constructed a nomogram. The nomogram had good discrimination regardless of whether there was CLNM, with a C-index of 0.809. The calibration curve indicated that the nomogram had good visual and quantitative consistency (p = 0.213). Decision curve analysis showed that the nomogram improved the net clinical benefit with a threshold probability of 0-82% in the training cohort and 0-71% in the validation cohort. We constructed a nomogram to predict CLNM in PTC and assist surgeons in making personalized clinical decisions for PTC.

9.
Endokrynol Pol ; 75(1): 27-34, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38497387

RESUMEN

INTRODUCTION: Thyroid carcinoma is the most frequent malignancy in different endocrine-related tumours. In this study, we demonstrated a long non-coding RNA LINC00092-associated molecular mechanism in promoting the progression of papillary thyroid carcinoma (PTC). MATERIAL AND METHODS: The expression of LINC00092 was analysed in the The Cancer Genome Atlas Thyroid Cancer (TCGA-THCA) patient cohorts and further determined by q-PCR. (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) (MTT) assay, and wound healing assay confirmed the function of LINC00092 in migration and proliferation. Q-ChIP validated the transcriptional target. Luciferase reporter assay validated the miRNA-mRNA target. RESULTS: The analysis in patient cohorts and in PTC TPC-1 cells showed that the expression of LINC00092 was repressed in thyroid carcinoma. In addition, the expression of LINC00092 was negatively associated with the advanced thyroid TNM stages. LINC00092 repressed epithelial-mesenchymal transition (EMT), migration, and proliferation of TPC-1 cells. Interestingly, we identified that MYB, a well-studied tumour promoter, is a transcription factor of LINC00092, thereby the expression of LINC00092 was directly repressed by MYB. Furthermore, miR-4741 was also validated as a direct target of MYB and was induced by MYB. Notably, LINC00092 was repressed by miR-4741 through the direct 3'-untranslational region (3'-UTR) target. Therefore, MYB induced EMT of TPC-1 cells by repressing LINC00092 directly or indirectly via miR-4741. CONCLUSIONS: Our study validated that LINC00092 is a tumour suppressor lncRNA in PTC. MYB directly or indirectly represses LINC00092, which contributes to the PTC progression. MYB, LINC00092, and miR-4741 form a coherent feed forward loop. The axis of MYB-LINC00092 promotes progression of PTC.


Asunto(s)
MicroARNs , Neoplasias de la Tiroides , Humanos , Línea Celular Tumoral , Proliferación Celular , MicroARNs/genética , MicroARNs/metabolismo , Cáncer Papilar Tiroideo/patología , Neoplasias de la Tiroides/patología , ARN Largo no Codificante
10.
Exp Lung Res ; 50(1): 25-41, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38419581

RESUMEN

BACKGROUND: The transcriptional repressor B-cell lymphoma 6 (BCL6) has been reported to inhibit inflammation. So far, experimental evidence for the role of BCL6 in bronchopulmonary dysplasia (BPD) is lacking. Our study investigated the roles of BCL6 in the progression of BPD and its downstream mechanisms. METHODS: Hyperoxia or lipopolysaccharide (LPS) was used to mimic the BPD mouse model. To investigate the effects of BCL6 on BPD, recombination adeno-associated virus serotype 9 expressing BCL6 (rAAV9-BCL6) and BCL6 inhibitor FX1 were administered in mice. The pulmonary pathological changes, inflammatory chemokines and NLRP3-related protein were observed. Meanwhile, BCL6 overexpression plasmid was used in human pulmonary microvascular endothelial cells (HPMECs). Cell proliferation, apoptosis, and NLRP3-related protein were detected. RESULTS: Either hyperoxia or LPS suppressed pulmonary BCL6 mRNA expression. rAAV9-BCL6 administration significantly inhibited hyperoxia-induced NLRP3 upregulation and inflammation, attenuated alveolar simplification and dysregulated angiogenesis in BPD mice, which were characterized by decreased mean linear intercept, increased radical alveolar count and alveoli numbers, and the upregulated CD31 expression. Meanwhile, BCL6 overexpression promoted proliferation and angiogenesis, inhibited apoptosis and inflammation in hyperoxia-stimulated HPMECs. Moreover, administration of BCL6 inhibitor FX1 arrested growth and development. FX1-treated BPD mice exhibited exacerbation of alveolar pathological changes and pulmonary vessel permeability, with upregulated mRNA levels of pro-inflammatory cytokines and pro-fibrogenic factors. Furthermore, both rAAV9-BCL6 and FX1 administration exerted a long-lasting effect on hyperoxia-induced lung injury (≥4 wk). CONCLUSIONS: BCL6 inhibits NLRP3-mediated inflammation, attenuates alveolar simplification and dysregulated pulmonary vessel development in hyperoxia-induced BPD mice. Hence, BCL6 may be a target in treating BPD and neonatal diseases.


Asunto(s)
Displasia Broncopulmonar , Hiperoxia , Lesión Pulmonar , Animales , Humanos , Recién Nacido , Ratones , Animales Recién Nacidos , Displasia Broncopulmonar/etiología , Displasia Broncopulmonar/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/patología , Hiperoxia/metabolismo , Inflamación/metabolismo , Lipopolisacáridos/farmacología , Pulmón/metabolismo , Lesión Pulmonar/tratamiento farmacológico , Lesión Pulmonar/etiología , Lesión Pulmonar/prevención & control , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , ARN Mensajero/metabolismo
11.
Plant Commun ; 5(5): 100823, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38243597

RESUMEN

The inducible CRISPR activation (CRISPR-a) system offers unparalleled precision and versatility for regulating endogenous genes, making it highly sought after in plant research. In this study, we developed a chemically inducible CRISPR-a tool for plants called ER-Tag by combining the LexA-VP16-ER inducible system with the SunTag CRISPR-a system. We systematically compared different induction strategies and achieved high efficiency in target gene activation. We demonstrated that guide RNAs can be multiplexed and pooled for large-scale screening of effective morphogenic genes and gene pairs involved in plant regeneration. Further experiments showed that induced activation of these morphogenic genes can accelerate regeneration and improve regeneration efficiency in both eudicot and monocot plants, including alfalfa, woodland strawberry, and sheepgrass. Our study expands the CRISPR toolset in plants and provides a powerful new strategy for studying gene function when constitutive expression is not feasible or ideal.


Asunto(s)
Regeneración , Regeneración/genética , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Plantas Modificadas Genéticamente/genética , Regulación de la Expresión Génica de las Plantas
12.
Proc Natl Acad Sci U S A ; 121(6): e2317408121, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38285953

RESUMEN

Light plays a central role in plant growth and development, providing an energy source and governing various aspects of plant morphology. Previous study showed that many polyadenylated full-length RNA molecules within the nucleus contain unspliced introns (post-transcriptionally spliced introns, PTS introns), which may play a role in rapidly responding to changes in environmental signals. However, the mechanism underlying post-transcriptional regulation during initial light exposure of young, etiolated seedlings remains elusive. In this study, we used FLEP-seq2, a Nanopore-based sequencing technique, to analyze nuclear RNAs in Arabidopsis (Arabidopsis thaliana) seedlings under different light conditions and found numerous light-responsive PTS introns. We also used single-nucleus RNA sequencing (snRNA-seq) to profile transcripts in single nucleus and investigate the distribution of light-responsive PTS introns across distinct cell types. We established that light-induced PTS introns are predominant in mesophyll cells during seedling de-etiolation following exposure of etiolated seedlings to light. We further demonstrated the involvement of the splicing-related factor A. thaliana PROTEIN ARGININE METHYLTRANSFERASE 5 (AtPRMT5), working in concert with the E3 ubiquitin ligase CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), a critical repressor of light signaling pathways. We showed that these two proteins orchestrate light-induced PTS events in mesophyll cells and facilitate chloroplast development, photosynthesis, and morphogenesis in response to ever-changing light conditions. These findings provide crucial insights into the intricate mechanisms underlying plant acclimation to light at the cell-type level.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteína-Arginina N-Metiltransferasas , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Plantones/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Luz
13.
Sci China Life Sci ; 67(1): 149-160, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37897613

RESUMEN

Alkaline soils pose an increasing problem for agriculture worldwide, but using stress-tolerant plants as green manure can improve marginal land. Here, we show that the legume Sesbania cannabina is very tolerant to alkaline conditions and, when used as a green manure, substantially improves alkaline soil. To understand genome evolution and the mechanisms of stress tolerance in this allotetraploid legume, we generated the first telomere-to-telomere genome assembly of S. cannabina spanning ∼2,087 Mb. The assembly included all centromeric regions, which contain centromeric satellite repeats, and complete chromosome ends with telomeric characteristics. Further genome analysis distinguished A and B subgenomes, which diverged approximately 7.9 million years ago. Comparative genomic analysis revealed that the chromosome homoeologs underwent large-scale inversion events (>10 Mb) and a significant, transposon-driven size expansion of the chromosome 5A homoeolog. We further identified four specific alkali-induced phosphate transporter genes in S. cannabina; these may function in alkali tolerance by relieving the deficiency in available phosphorus in alkaline soil. Our work highlights the significance of S. cannabina as a green tool to improve marginal lands and sheds light on subgenome evolution and adaptation to alkaline soils.


Asunto(s)
Fabaceae , Sesbania , Sesbania/genética , Estiércol , Suelo , Verduras/genética , Álcalis , Telómero/genética
14.
Front Endocrinol (Lausanne) ; 14: 1278007, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38089626

RESUMEN

Background: The comparative advantages of robotic posterior retroperitoneal adrenalectomy (RPRA) over laparoscopic posterior retroperitoneal adrenalectomy (LPRA) remain a topic of ongoing debate within the medical community. This systematic literature review and meta-analysis aim to assess the safety and efficacy of RPRA compared to LPRA, with the ultimate goal of determining which procedure yields superior clinical outcomes. Methods: A systematic search was conducted on databases including PubMed, Embase, Web of Science, and the Cochrane Library database to identify relevant studies, encompassing both randomized controlled trials (RCTs) and non-RCTs, that compare the outcomes of RPRA and LPRA. The primary focus of this study was to evaluate perioperative surgical outcomes and complications. Review Manager 5.4 was used for this analysis. The study was registered with PROSPERO (ID: CRD42023453816). Results: A total of seven non-RCTs were identified and included in this study, encompassing a cohort of 675 patients. The findings indicate that RPRA exhibited superior performance compared to LPRA in terms of hospital stay (weighted mean difference [WMD] -0.78 days, 95% confidence interval [CI] -1.46 to -0.10; p = 0.02). However, there were no statistically significant differences observed between the two techniques in terms of operative time, blood loss, transfusion rates, conversion rates, major complications, and overall complications. Conclusion: RPRA is associated with a significantly shorter hospital stay compared to LPRA, while demonstrating comparable operative time, blood loss, conversion rate, and complication rate. However, it is important to note that further research of a more comprehensive and rigorous nature is necessary to validate these findings. Systematic review registration: https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=453816, identifier CRD42023453816.


Asunto(s)
Laparoscopía , Procedimientos Quirúrgicos Robotizados , Humanos , Procedimientos Quirúrgicos Robotizados/efectos adversos , Procedimientos Quirúrgicos Robotizados/métodos , Laparoscopía/efectos adversos , Laparoscopía/métodos , Adrenalectomía/efectos adversos , Adrenalectomía/métodos , Espacio Retroperitoneal/cirugía , Pérdida de Sangre Quirúrgica
15.
Int J Ophthalmol ; 16(12): 1911-1918, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38111923

RESUMEN

AIM: To investigate the relationship between dynamic tear meniscus parameters and dry eye using an automated tear meniscus segmentation method. METHODS: The analysis of tear meniscus videos captured within 5s after a complete blink includes data from 38 participates. By processing video data, several key parameters including the average height of the tear meniscus at different lengths, the curvature of the tear meniscus's upper boundary, and the total area of the tear meniscus in each frame were calculated. The effective values of these dynamic parameters were then linearly fitted to explore the relationship between their changing trends and dry eye disease. RESULTS: In 94.74% of the samples, the average height of central tear meniscus increased over time. Moreover, 97.37% of the samples exhibited an increase in the overall tear meniscus height (TMH) and area from the nasal to temporal side. Notably, the central TMH increased at a faster rate compared to the nasal side with the temporal side showing the slowest ascent. Statistical analysis indicates that the upper boundary curvature of the whole tear meniscus as well as the tear meniscus of the nasal side (2, 3, and 4 mm) aid in identifying the presence of dry eye and assessing its severity. CONCLUSION: This study contributes to the understanding of tear meniscus dynamics as potential markers for dry eye, utilizing an automated and non-invasive approach that has implications for clinical assessment.

16.
Nat Commun ; 14(1): 6789, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37880207

RESUMEN

Cold stress affects rice growth and productivity. Defects in the plastid-localized pseudouridine synthase OsPUS1 affect chloroplast ribosome biogenesis, leading to low-temperature albino seedlings and accumulation of reactive oxygen species (ROS). Here, we report an ospus1-1 suppressor, sop10. SOP10 encodes a mitochondria-localized pentatricopeptide repeat protein. Mutations in SOP10 impair intron splicing of the nad4 and nad5 transcripts and decrease RNA editing efficiency of the nad2, nad6, and rps4 transcripts, resulting in deficiencies in mitochondrial complex I, thus decrease ROS generation and rescuing the albino phenotype. Overexpression of different compartment-localized superoxide dismutases (SOD) genes in ospus1-1 reverses the ROS over-accumulation and albino phenotypes to various degrees, with Mn-SOD reversing the best. Mutation of SOP10 in indica rice varieties enhances cold tolerance with lower ROS levels. We find that the mitochondrial superoxide plays a key role in rice cold responses, and identify a mitochondrial superoxide modulating factor, informing efforts to improve rice cold tolerance.


Asunto(s)
Oryza , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Superóxidos/metabolismo , Oryza/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Regulación de la Expresión Génica de las Plantas
17.
J Robot Surg ; 17(6): 2633-2646, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37731152

RESUMEN

To compare perioperative outcomes between Holmium laser enucleation of the prostate (HoLEP) and robotic-assisted simple pasta-ectomy (RASP)for large-volume benign prostatic hyperplasia(> 80 ml). In August 2023, we undertook a comprehensive search of major global databases including PubMed, Embase, and Google Scholar, focusing solely on articles written in English. Studies that were merely reviews or protocols without any specific published data were omitted. Furthermore, articles that comprised conference abstracts or content not pertinent to our subject of study were also disregarded. To calculate the inverse variances and 95% confidence intervals (CIs) for categorical variables' mean differences, we employed the Cochran-Mantel-Haenszel approach along with random-effects models. The findings were denoted in the form of odds ratios (ORs) and 95% CIs. A p-value less than 0.05 was deemed to indicate statistical significance. Our finalized meta-analysis incorporated six articles, including one randomized controlled trial (RCT) and five cohort studies. These studies accounted for a total of 1218 patients, 944 of whom underwent Holmium Laser Enucleation of the Prostate (HoLEP) and 274 who underwent Robotic-Assisted Simple Prostatectomy (RASP). The pooled analysis from these six papers demonstrated that compared to RASP, HoLEP had a shorter hospital stay, shorter catheterization duration, and a lower blood transfusion rate. Moreover, HoLEP patients exhibited a smaller reduction in postoperative hemoglobin levels. Statistically, there were no significant differences between the two procedures regarding operative time, postoperative PSA, the weight of prostate specimens, IPSS, Qmax, PVR, QoL, and postoperative complications. (HoLEP) and (RASP) are both effective and safe procedures for treating large-volume benign prostatic hyperplasia. HoLEP, with its benefits of shorter catheterization and hospitalization duration, lesser decline in postoperative hemoglobin, and reduced blood transfusion needs, stands as a preferred choice for treating extensive prostate enlargement. However, further validation through more high-quality clinical randomized trials is required.


Asunto(s)
Terapia por Láser , Láseres de Estado Sólido , Hiperplasia Prostática , Procedimientos Quirúrgicos Robotizados , Resección Transuretral de la Próstata , Humanos , Masculino , Hemoglobinas , Terapia por Láser/efectos adversos , Terapia por Láser/métodos , Láseres de Estado Sólido/efectos adversos , Prostatectomía/efectos adversos , Prostatectomía/métodos , Hiperplasia Prostática/cirugía , Calidad de Vida , Ensayos Clínicos Controlados Aleatorios como Asunto , Procedimientos Quirúrgicos Robotizados/efectos adversos , Procedimientos Quirúrgicos Robotizados/métodos , Tulio/efectos adversos , Resección Transuretral de la Próstata/métodos , Resultado del Tratamiento
18.
Nat Plants ; 9(9): 1439-1450, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37599304

RESUMEN

The short read-length of next-generation sequencing makes it challenging to characterize highly repetitive regions (HRRs) such as centromeres, telomeres and ribosomal DNAs. Based on recent strategies that combined long-read sequencing and exogenous enzymatic labelling of open chromatin, we developed single-molecule targeted accessibility and methylation sequencing (STAM-seq) in plants by further integrating nanopore adaptive sampling to investigate the HRRs in wild-type Arabidopsis and DNA methylation mutants that are defective in CG- or non-CG methylation. We found that CEN180 repeats show higher chromatin accessibility and lower DNA methylation on their forward strand, individual rDNA units show a negative correlation between their DNA methylation and accessibility, and both accessibility and CHH methylation levels are lower at telomere compared to adjacent subtelomeric region. Moreover, DNA methylation-deficient mutants showed increased chromatin accessibility at HRRs, consistent with the role of DNA methylation in maintaining heterochromatic status in plants. STAM-seq can be applied to study accessibility and methylation of repetitive sequences across diverse plant species.


Asunto(s)
Arabidopsis , Arabidopsis/genética , Centrómero/genética , Telómero/genética , Metilación de ADN , Cromatina/genética , ADN Ribosómico
19.
Trends Biochem Sci ; 48(9): 788-800, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37393166

RESUMEN

Temperature is one of the main environmental cues affecting plant growth and development, and plants have evolved multiple mechanisms to sense and acclimate to high temperature. Emerging research has shown that transcription factors, epigenetic factors, and their coordination are essential for plant temperature responses and the resulting phenological adaptation. Here, we summarize recent advances in molecular and cellular mechanisms to understand how plants acclimate to high temperature and describe how plant meristems sense and integrate environmental signals. Furthermore, we lay out future directions for new technologies to reveal heterogeneous responses in different cell types thus improving plant environmental plasticity.


Asunto(s)
Desarrollo de la Planta , Factores de Transcripción , Temperatura , Factores de Transcripción/genética , Plantas/genética , Epigénesis Genética
20.
Cell Biosci ; 13(1): 101, 2023 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-37270503

RESUMEN

BACKGROUND: Olfactory dysfunction is among the earliest non-motor symptoms of Parkinson's disease (PD). As the foremost pathological hallmark, α-synuclein initiates the pathology in the olfactory pathway at the early stage of PD, particularly in the olfactory epithelium (OE) and olfactory bulb (OB). However, the local neural microcircuit mechanisms underlying olfactory dysfunction between OE and OB in early PD remain unknown. RESULTS: We observed that odor detection and discrimination were impaired in 6-month-old SNCA-A53T mice, while their motor ability remained unaffected. It was confirmed that α-synuclein increased and accumulated in OB but not in OE. Notably, the hyperactivity of mitral/tufted cells and the excitation/inhibition imbalance in OB were found in 6-month-old SNCA-A53T mice, which was attributed to the impaired GABAergic transmission and aberrant expression of GABA transporter 1 and vesicular GABA transporter in OB. We further showed that tiagabine, a potent and selective GABA reuptake inhibitor, could reverse the impaired olfactory function and GABAergic signaling in OB of SNCA-A53T mice. CONCLUSIONS: Taken together, our findings demonstrate potential synaptic mechanisms of local neural microcircuit underlying olfactory dysfunction at the early stage of PD. These results highlight the critical role of aberrant GABAergic signaling of OB in early diagnosis and provide a potential therapeutic strategy for early-stage PD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...