Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Physiol Biochem ; 210: 108591, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38583314

RESUMEN

Fresh lotus seeds are gaining favor with consumers for their crunchy texture and natural sweetness. However, the intricacies of sugar accumulation in lotus seeds remain elusive, which greatly hinders the quality improvement of fresh lotus seeds. This study endeavors to elucidate this mechanism by identifying and characterizing the sucrose synthase (SUS) gene family in lotus. Comprising five distinct members, namely NnSUS1 to NnSUS5, each gene within this family features a C-terminal glycosyl transferase1 (GT1) domain. Among them, NnSUS1 is the predominately expressed gene, showing high transcript abundance in the floral organs and cotyledons. NnSUS1 was continuously up-regulated from 6 to 18 days after pollination (DAP) in lotus cotyledons. Furthermore, NnSUS1 demonstrates co-expression relationships with numerous genes involved in starch and sucrose metabolism. To investigate the function of NnSUS1, a transient overexpression system was established in lotus cotyledons, which confirmed the gene's contribution to sugar accumulation. Specifically, transient overexpression of NnSUS1 in seed cotyledons leads to a significant increase in the levels of total soluble sugar, including sucrose and fructose. These findings provide valuable theoretical insights for improving sugar content in lotus seeds through molecular breeding methods.


Asunto(s)
Cotiledón , Regulación de la Expresión Génica de las Plantas , Glucosiltransferasas , Lotus , Proteínas de Plantas , Semillas , Glucosiltransferasas/metabolismo , Glucosiltransferasas/genética , Cotiledón/genética , Cotiledón/metabolismo , Cotiledón/enzimología , Lotus/genética , Lotus/enzimología , Lotus/metabolismo , Semillas/genética , Semillas/metabolismo , Semillas/enzimología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sacarosa/metabolismo , Azúcares/metabolismo
2.
Plant Physiol Biochem ; 207: 108339, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38199028

RESUMEN

The transition to flowering is a vital process in the lotus life cycle that significantly impacts its ornamental value and seed production. However, the molecular basis of floral transition in lotus remains largely unknown. Here, eight homologous FLOWERING LOCUS T (FT) genes were initially characterized in lotus, which were designated as NnFT1-NnFT8. All of these genes were found to possess the conserved PEBP domain and exhibited high transcript levels in both lotus leaves and floral organs. The proNnFT:ß-glucuronidase (GUS) assay exhibited GUS staining in the vascular tissues of leaves. Furthermore, subcellular localization revealed that NnFT proteins were present in various cellular organelles, including the nucleus, cytoplasm, and endoplasmic reticulum. Overexpression of two NnFT homologs, NnFT2 and NnFT3, rescued the late flowering phenotype in the Arabidopsis ft-10 mutant, indicating the stimulative roles of NnFTs in floral induction. Moreover, NnFTs demonstrated interactions with a bZIP transcription factor, FLOWERING LOCUS D (NnFD), both in vitro and in vivo. These findings will not only deepen our understanding of the regulatory mechanism underlying lotus floral transition, but also provide valuable genetic resources for creating new lotus varieties with extended blooming periods using molecular strategies in the future.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Flores/genética , Flores/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Hojas de la Planta/metabolismo , Regulación de la Expresión Génica de las Plantas
3.
Physiol Plant ; 175(5): e14027, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37882309

RESUMEN

Callus browning is a major drawback to lotus callus proliferation and regeneration. However, the underlying mechanism of its formation remains largely unknown. Herein, we aimed to explore the metabolic and molecular basis of lotus callus browning by combining histological staining, high-throughput metabolomics, and transcriptomic assays for lotus callus at three browning stages. Histological stained brown callus cross sections displayed severe cell death symptoms, accompanied by an obvious accumulation of polyphenols and lignified materials. Widely targeted metabolomics revealed extensively decreased accumulation of most detected flavonoids and benzylisoquinoline alkaloids (BIAs), as well as a few phenolic acids, amino acids and their derivatives in callus with browning symptoms. Conversely, the contents of most detected tannins were significantly increased. Subsequent comparative transcriptomics identified a set of differentially expressed genes (DEGs) associated with the biosynthesis and regulation of flavonoids and BIAs in lotus. Notably, callus browning was coupled with significantly up-regulated expression of two polyphenol oxidase (PPO) and 17 peroxidase (POD) encoding genes, while the expression of ethylene associated genes remained at marginal levels. These results suggest that lotus callus browning is primarily controlled at the level of metabolism, wherein the oxidation of flavonoids and BIAs is crucially decisive.


Asunto(s)
Lotus , Nelumbo , Nelumbo/genética , Nelumbo/metabolismo , Lotus/metabolismo , Transcriptoma/genética , Perfilación de la Expresión Génica , Flavonoides/metabolismo
4.
Plant Physiol ; 193(2): 1213-1226, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37348874

RESUMEN

Lotus (Nelumbo spp.) is an important aquatic ornamental genus in the family Nelumbonaceae comprising only 2 species: Nelumbo lutea with yellow flowers and Nelumbo nucifera with red or white flowers. The petal color variations between these 2 species have previously been associated with the potential activities of FLAVONOL SYNTHASE (FLS) and MYB5. However, the underlying genetic mechanisms of flower color divergence within the N. nucifera species remain unclear. Here, quantitative trait locus mapping led to the identification of MYB5, a candidate gene controlling petal color in N. nucifera. Genotyping of 213 natural lotus accessions revealed an 80 kb presence/absence variant (PAV) of the NnMYB5 gene that is associated with petal color variation. Transcriptome analysis, dual-luciferase, and yeast 1-hybrid assays showed that NnMYB5 could directly activate the anthocyanin transporter gene GLUTATHIONE S-TRANSFERASE2 (NnGST2). Heterologous expression of NnGST2 in Arabidopsis (Arabidopsis thaliana) and its overexpression in lotus petals induced anthocyanin accumulation. Deletion of the 80 kb PAV within NnMYB5 inactivated NnGST2 expression and blocked anthocyanin accumulation in white N. nucifera petals. In contrast, the anthocyanin deficiency of N. lutea occurred due to pseudogenized NlMYB5 alleles. Our results establish a regulatory link between NnMYB5 and NnGST2 in petal anthocyanin accumulation and demonstrate the independent mechanisms controlling flower coloration in Nelumbo.


Asunto(s)
Antocianinas , Nelumbo , Antocianinas/metabolismo , Nelumbo/genética , Nelumbo/metabolismo , Factores de Transcripción/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Flores/genética , Flores/metabolismo , Color
5.
Front Plant Sci ; 13: 862915, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35783938

RESUMEN

Lotus (Nelumbo nucifera) is a large aquatic plant that accumulates pharmacologically significant benzylisoquinoline alkaloids (BIAs). However, little is known about their biosynthesis and regulation. Here, we show that the two group III WRKY transcription factors (TFs), NnWRKY70a and NnWRKY70b, positively regulate the BIA biosynthesis in lotus. Both NnWRKY70s are jasmonic acid (JA) responsive, with their expression profiles highly correlated to the BIA concentration and BIA pathway gene expression. A dual-luciferase assay showed that NnWRKY70a could transactivate the NnTYDC promoter, whereas NnWRKY70b could activate promoters of the three BIA structural genes, including NnTYDC, NnCYP80G, and Nn7OMT. In addition, the transient overexpression of NnWRKY70a and NnWRKY70b in lotus petals significantly elevated the BIA alkaloid concentrations. Notably, NnWRKY70b seems to be a stronger BIA biosynthesis regulator, because it dramatically induced more BIA structural gene expressions and BIA accumulation than NnWRKY70a. A yeast two-hybrid assay further revealed that NnWRKY70b physically interacted with NnJAZ1 and two other group III WRKY TFs (NnWRKY53b and NnWRKY70a), suggesting that it may cooperate with the other group III WRKYs to adjust the lotus BIA biosynthesis via the JA-signaling pathway. To illustrate the mechanism underlying NnWRKY70b-mediated BIA regulation in the lotus, a simplified model is proposed. Our study provides useful insights into the regulatory roles of WRKY TFs in the biosynthesis of secondary metabolites.

6.
Plant Mol Biol ; 110(1-2): 23-36, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35648325

RESUMEN

KEY MESSAGE: QTL mapping studies identified three reliable QTLs of rhizome enlargement in lotus. NnBEL6 located within the confidence interval of the major QTL cqREI-LG2 is a key candidate gene enhancing rhizome enlargement. Lotus (Nelumbo) is perennial aquatic plant with nutritional, pharmacological, and ornamental significance. Rhizome is an underground lotus stem that acts as a storage organ and as a reproductive tissue for asexual production. The enlargement of lotus rhizome is an important adaptive strategy for surviving the cold winter. The aims of this study were to identify quantitative trait loci (QTLs) for rhizome enlargement traits including rhizome enlargement index (REI) and number of enlarged rhizome (NER), and to uncover their associated candidate genes. A high-density genetic linkage map was constructed, consisting of 2935 markers binned from 236,840 SNPs. A total of 14 significant QTLs were detected for REI and NER, which explained 6.7-22.3% of trait variance. Three QTL regions were repeatedly identified in at least 2 years, and a major QTL, designated cqREI-LG2, with a rhizome-enlargement effect and about 20% of the phenotypic contribution was identified across the 3 climatic years. A candidate NnBEL6 gene located within the confidence interval of cqREI-LG2 was considered to be putatively involved in lotus rhizome enlargement. The expression of NnBEL6 was exclusively induced by rhizome swelling. Sequence comparison of NnBEL6 among lotus cultivars revealed a functional Indel site in its promoter that likely initiates the rhizome enlargement process. Transgenic potato assay was used to confirm the role of NnBEL6 in inducing tuberization. The successful identification QTLs and functional validation of NnBEL6 gene reported in this study will enrich our knowledge on the genetic basis of rhizome enlargement in lotus.


Asunto(s)
Lotus , Nelumbo , Mapeo Cromosómico , Lotus/genética , Nelumbo/genética , Sitios de Carácter Cuantitativo/genética , Rizoma/genética , Rizoma/metabolismo
7.
Front Plant Sci ; 13: 885503, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35677240

RESUMEN

Lotus plumule is a green tissue in the middle of seeds that predominantly accumulates bisbenzylisoquinoline alkaloids (bis-BIAs) and chlorophyll (Chl). However, the biosynthetic mechanisms of these two metabolites remain largely unknown in lotus. This study used physiological and RNA sequencing (RNA-Seq) approaches to characterize the development and molecular mechanisms of bis-BIAs and Chl biosynthesis in lotus plumule. Physiological analysis revealed that exponential plumule growth occurred between 9 and 15 days after pollination (DAP), which coincided with the onset of bis-BIAs biosynthesis and its subsequent rapid accumulation. Transcriptome analysis of lotus plumule identified a total of 8,725 differentially expressed genes (DEGs), representing ~27.7% of all transcripts in the lotus genome. Sixteen structural DEGs, potentially associated with bis-BIAs biosynthesis, were identified. Of these, 12 encoded O-methyltransferases (OMTs) are likely involved in the methylation and bis-BIAs diversity in lotus. In addition, functionally divergent paralogous and redundant homologous gene members of the BIAs biosynthesis pathway, as well as transcription factors co-expressed with bis-BIAs and Chl biosynthesis genes, were identified. Twenty-two genes encoding 16 conserved enzymes of the Chl biosynthesis pathway were identified, with the majority being significantly upregulated by Chl biosynthesis. Photosynthesis and Chl biosynthesis pathways were simultaneously activated during lotus plumule development. Moreover, our results showed that light-driven Pchlide reduction is essential for Chl biosynthesis in the lotus plumule. These results will be useful for enhancing our understanding of alkaloids and Chl biosynthesis in plants.

8.
Plant J ; 110(5): 1498-1515, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35362164

RESUMEN

Nelumbo lutea (American lotus), which differs from Nelumbo nucifera (Asian lotus) morphologically, is one of the two remaining species in the basal eudicot family Nelumbonaceae. Here, we assembled the 843-Mb genome of American lotus into eight pseudochromosomes containing 31 382 protein-coding genes. Comparative analyses revealed conserved synteny without large chromosomal rearrangements between the genomes of American and Asian lotus and identified 29 533 structural variants (SVs). Carotenoid and anthocyanin pigments determine the yellow and red petal colors of American and Asian lotus, respectively. The structural genes encoding enzymes of the carotenoid and anthocyanin biosynthesis pathways were conserved between two species but differed in expression. We detected SVs caused by repetitive sequence expansion or contraction among the anthocyanin biosynthesis regulatory MYB genes. Further transient overexpression of candidate NnMYB5 induced anthocyanin accumulation in lotus petals. Alternative oxidase (AOX), uncoupling proteins (UCPs), and sugar metabolism and transportation contributed to carpel thermogenesis. Carpels produce heat with sugars transported from leaves as the main substrates, because there was weak tonoplast sugar transporter (TST) activity, and with SWEETs were highly expressed during thermogenesis. Cell proliferation-related activities were particularly enhanced in the warmer carpels compared with stamens during the cold night before blooming, which suggested that thermogenesis plays an important role in flower protogyny. Population genomic analyses revealed deep divergence between American and Asian lotus, and independent domestication affecting seed, rhizome, and flower traits. Our findings provide a high-quality reference genome of American lotus for exploring the genetic divergence and variation between two species and revealed possible genomic bases for petal color, carpel thermogenesis and domestication in lotus.


Asunto(s)
Genoma de Planta , Nelumbo , Antocianinas/análisis , Carotenoides/análisis , Domesticación , Flores/química , Flores/genética , Nelumbo/genética , Nelumbo/metabolismo , Azúcares/metabolismo , Termogénesis
9.
Plant Physiol Biochem ; 179: 100-107, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35325657

RESUMEN

Flower color is a key trait that determines the ornamental quality of aquatic lotus (Nelumbo nucifera). Color fading significantly decreases the ornamental value of lotus flowers. However, the molecular mechanism underlying lotus petal discoloration remains largely unknown. Here, the anthocyanin content and global transcriptional profiling of lotus petals of cultivar 'Qiusanse' in four developmental stages were analyzed. Five anthocyanin components were detected, and the total anthocyanin content decreased as the petal color changed from red to nearly white. Moreover, the malondialdehyde (MDA) content and peroxidase (POD) activity increased during color fading. RNA-seq analysis revealed a total of 4,092 differentially expressed genes (DEGs) between petal developmental stages. Notably, oxidoreductase and hydrolase activity related genes were overrepresented in DEGs. The expression pattern of key anthocyanin biosynthesis genes including, CHS, F3H, ANS, UFGT, and transcription factor regulators, including MYBs, WRKYs and bHLHs were correlated with anthocyanin accumulation. Interestingly, DEGs associated with anthocyanin degradation and vacuolar pH regulation, including peroxidase, proton pumps regulators such as WRKY3 and MYB5-like, were significantly upregulated during the late stages of flowering. This study reveals for the first time the transcriptional dynamics during lotus petal discoloration. Our results suggest the involvement of anthocyanin biosynthesis repressors and degrading genes as well as pH regulators in controlling color fading of lotus petals. The study also provides valuable information and candidate genes for improving the lotus flower color.


Asunto(s)
Lotus , Nelumbo , Antocianinas/metabolismo , Flores/genética , Flores/metabolismo , Lotus/metabolismo , Nelumbo/genética , Nelumbo/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
Plant Physiol Biochem ; 177: 38-45, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35245773

RESUMEN

Lotus (Nelumbo nucifera) was used as model plant in this study to explore its physiology and molecular response upon short-term exposure to silver nano-particles (AgNPs). Accumulation patterns demonstrated a potential uptake of AgNPs by roots and transport to the leaves as a likely key translocation route in lotus. AgNPs exposure was negatively correlated with lotus growth, including germination rate and petiole length in a concentration-dependent manner. Synthesis of chloroplast pigments in lotus leaves was enhanced by low AgNPs concentration, but were inhibited at high concentration. Hydrogen peroxide (H2O2) was detected in lotus leaves after AgNPs treatment. Proline accumulation in lotus leaves was induced with the increase in AgNPs concentration and exposure time. Antioxidant enzyme activities of superoxide dismutase (SOD), peroxidase (POD) as well as catalase (CAT) were enhanced after the first day of AgNPs exposure, but declined with increased exposure time, indicating a time-dependent toxicity of AgNPs. In addition, real-time PCR revealed that two detoxification-related genes, GSH1 and GST, could be activated on the first day of AgNPs exposure, but down-regulated with prolonged AgNPs treatment. Photosynthesis-related RbcS gene was up-regulated, however, no obvious difference in the expression of RbcL was observed after the first day of AgNPs exposure. Moreover, WRKY70a and WRKY70b transcription factors exhibited similar expression patterns, with the highest induction after a 5 mg/L AgNPs exposure on the first day, which decreased with prolonged exposure time. This study provides useful references for further evaluation of the toxic mechanism of AgNPs and their bio-effects on aquatic plants and ecosystems.


Asunto(s)
Nanopartículas del Metal , Nelumbo , Plata , Ecosistema , Expresión Génica , Peróxido de Hidrógeno/metabolismo , Nanopartículas del Metal/toxicidad , Nelumbo/efectos de los fármacos , Nelumbo/genética , Plata/toxicidad , Estrés Fisiológico
11.
Hortic Res ; 2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-35147174

RESUMEN

Water submergence is an environmental stress with detrimental effects on plant growth and survival. As a wetland plant species, lotus (Nelumbo nucifera) is widely cultivated in flood-prone lowlands throughout Asian countries, but little is known about its endurance and acclimation mechanisms to complete submergence. Here, we combined a time-course submergence experiment and an RNA-sequencing transcriptome analysis on two lotus varieties of "Qiuxing" and "China Antique". Both varieties showed a low submergence tolerance, with a median lethal time of around 10 days. Differentially expressed gene (DEG) analysis and weighted gene co-expression network analysis (WGCNA) identified a number of key genes putatively involved in lotus submergence responses. Lotus plants under complete submergence developed thinned leaves and elongated petioles containing high density of aerenchyma. All four lotus submergence responsive ERF-VII genes and gene sets corresponding to the low oxygen "escape" strategy (LOES) were elevated. In addition, a number of lotus innate immunity genes were rapidly induced by submergence, likely to confer resistance to possible pathogen infections. Our data also reveals the likely involvement of jasmonic acid in modulating lotus submergence responses, but to a lesser extent than the gaseous ethylene hormone. These results suggest that lotus plants primarily take the LOES strategy in coping with submergence-induced complex stresses, and will be valuable for people understanding the molecular basis underlying the plant submergence acclimations.

12.
BMC Plant Biol ; 20(1): 457, 2020 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-33023477

RESUMEN

BACKGROUND: Starch in the lotus seed contains a high proportion of amylose, which endows lotus seed a promising property in the development of hypoglycemic and low-glycemic index functional food. Currently, improving starch content is one of the major goals for seed-lotus breeding. ADP-glucose pyrophosphorylase (AGPase) plays an essential role in regulating starch biosynthesis in plants, but little is known about its characterization in lotus. RESULTS: We describe the nutritional compositions of lotus seed among 30 varieties with starch as a major component. Comparative transcriptome analysis showed that AGPase genes were differentially expressed in two varieties (CA and JX) with significant different starch content. Seven putative AGPase genes were identified in the lotus genome (Nelumbo nucifera Gaertn.), which could be grouped into two subfamilies. Selective pressure analysis indicated that purifying selection acted as a vital force in the evolution of AGPase genes. Expression analysis revealed that lotus AGPase genes have varying expression patterns, with NnAGPL2a and NnAGPS1a as the most predominantly expressed, especially in seed and rhizome. NnAGPL2a and NnAGPS1a were co-expressed with a number of starch and sucrose metabolism pathway related genes, and their expressions were accompanied by increased AGPase activity and starch content in lotus seed. CONCLUSIONS: Seven AGPase genes were characterized in lotus, with NnAGPL2a and NnAGPS1a, as the key genes involved in starch biosynthesis in lotus seed. These results considerably extend our understanding on lotus AGPase genes and provide theoretical basis for breeding new lotus varieties with high-starch content.


Asunto(s)
Glucosa-1-Fosfato Adenililtransferasa/genética , Nelumbo/enzimología , Nelumbo/genética , Semillas/metabolismo , Almidón/biosíntesis , Evolución Molecular , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Genes de Plantas , Variación Genética , Glucosa-1-Fosfato Adenililtransferasa/metabolismo , Nelumbo/química , Valor Nutritivo , Fitomejoramiento , Semillas/química
13.
Plants (Basel) ; 9(11)2020 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-33113801

RESUMEN

The lotus (Nelumbo nucifera) is one of the most popular aquatic plants in Asia, and has emerged as a novel model for studying flower and rhizome development, and primary and secondary metabolite accumulation. Here, we developed a highly efficient callus induction system for the lotus by optimizing a series of key factors that affect callus formation. The highest efficient callus production was induced on immature cotyledon and embryo explants grown on Murashige and Skoog (MS) basal medium containing an optimized combination of 3 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D) and 0.5 mg/L 6-benzylaminopurine (6-BA). In addition, lotus callus induction was proven to be influenced by lotus genotypes, light conditions, the developmental stages of explants and the time of explant sampling. Collecting immature cotyledons from seeds of the genotype "Shilihe 1", at 9 days post pollination, and to culture the explants in darkness, are proposed as the optimum conditions for lotus callus induction. Interestingly, highly efficient callus induction was also observed in explants of immature embryo derived aseptic seedlings; and a small amount of lotus benzylisoquinoline alkaloid (BIA) and obvious expression of BIA biosynthetic genes were detected in lotus callus.

14.
Int J Mol Sci ; 20(20)2019 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-31658615

RESUMEN

The WRKY family is one of the largest transcription factor (TF) families in plants and plays central roles in modulating plant stress responses and developmental processes, as well as secondary metabolic regulations. Lotus (Nelumbo nucifera) is an aquatic crop that has significant food, ornamental and pharmacological values. Here, we performed an overview analysis of WRKY TF family members in lotus, and studied their functions in environmental adaptation and regulation of lotus benzylisoquinoline alkaloid (BIA) biosynthesis. A total of 65 WRKY genes were identified in the lotus genome and they were well clustered in a similar pattern with their Arabidopsis homologs in seven groups (designated I, IIa-IIe, and III), although no lotus WRKY was clustered in the group IIIa. Most lotus WRKYs were functionally paired, which was attributed to the recently occurred whole genome duplication in lotus. In addition, lotus WRKYs were regulated dramatically by salicilic acid (SA), jasmonic acid (JA), and submergence treatments, and two lotus WRKYs, NnWRKY40a and NnWRKY40b, were significantly induced by JA and promoted lotus BIA biosynthesis through activating BIA biosynthetic genes. The investigation of WRKY TFs for this basal eudicot reveals new insights into the evolution of the WRKY family, and provides fundamental information for their functional studies and lotus breeding.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Nelumbo/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/clasificación , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Bencilisoquinolinas/metabolismo , Ciclopentanos , Proteínas de Unión al ADN/clasificación , Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Genoma de Planta/genética , Nelumbo/genética , Oxilipinas , Filogenia , Fitomejoramiento , Proteínas de Plantas/clasificación , Proteínas de Plantas/aislamiento & purificación , Factores de Transcripción/clasificación , Factores de Transcripción/aislamiento & purificación
15.
Hortic Res ; 5: 29, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29872534

RESUMEN

Lotus predominantly accumulates benzylisoquinoline alkaloids (BIAs), but their biosynthesis and regulation remain unclear. Here, we investigated structural and regulatory genes involved in BIA accumulation in lotus. Two clustered CYP80 genes were identified to be responsible for the biosynthesis of bis-BIAs and aporphine-type BIAs, respectively, and their tissue-specific expression causes divergence in alkaloid component between leaf and embryo. In contrast with the common (S)-reticuline precursor for most BIAs, aporphine alkaloids in lotus leaf may result from the (S)-N-methylcoclaurine precursor. Structural diversity of BIA alkaloids in the leaf is attributed to enzymatic modifications, including intramolecular C-C phenol coupling on ring A and methylation and demethylation at certain positions. Additionally, most BIA biosynthetic pathway genes show higher levels of expression in the leaf of high-BIA cultivar compared with low-BIA cultivar, suggesting transcriptional regulation of BIA accumulation in lotus. Five transcription factors, including three MYBs, one ethylene-responsive factor, and one basic helix-loop-helix (bHLH), were identified to be candidate regulators of BIA biosynthesis in lotus. Our study reveals a BIA biosynthetic pathway and its transcriptional regulation in lotus, which will enable a deeper understanding of BIA biosynthesis in plants.

16.
Methods Mol Biol ; 1696: 13-39, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29086394

RESUMEN

Gaining membrane vesicles from different plant species and tissue types is crucial for membrane studies. Membrane vesicles can be used for further purification of individual membrane types, and, for example, in studies of membrane enzyme activities, transport assays, and in proteomic analysis. Membrane isolation from some species, such as conifers, has proved to be more difficult than that of angiosperm species. In this paper, we describe steps for isolating cellular membranes from developing xylem, phloem, and lignin-forming tissue-cultured cells of Norway spruce, followed by partial enrichment of plasma membranes by aqueous polymer two-phase partitioning and purity analyses. The methods used are partially similar to the ones used for mono- and dicotyledonous plants, but some steps require discreet optimization, probably due to a high content of phenolic compounds present in the tissues and cultured cells of Norway spruce.


Asunto(s)
Fraccionamiento Celular/métodos , Membrana Celular , Picea/citología , Técnicas de Cultivo de Célula , Lignina/metabolismo , Floema/citología , Xilema/citología
17.
J Sci Food Agric ; 97(12): 4258-4263, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28233321

RESUMEN

BACKGROUND: Apple is one of the staple fruits worldwide which are a good source of mineral nutrients. However, little is known about genetic variation for mineral nutrition in apple germplasm. In this study, the calcium and zinc contents in mature fruits of 378 apple cultivars and 39 wild relatives were assessed. Mineral concentrations were quantified using flame atomic absorption spectroscopy (FAAS). RESULTS: Both calcium and zinc accumulation showed great variation among accessions tested. Overall, wild fruits were significantly richer in zinc than cultivated fruits, while the average concentration of calcium was similar between cultivated and wild fruits. The difference in zinc concentration between wild and cultivated fruits may be an indirect result of artificial selection on fruit characteristics during apple domestication. Moreover, calcium concentration in fruit showed a decreasing trend throughout fruit development of apple, while zinc concentration in fruit displayed a complex variation pattern in the late stages of fruit development. CONCLUSION: The finding of a wild genetic variation for fruit calcium and zinc accumulation in apple germplasm could be helpful for future research on genetic dissection and improvement of calcium and zinc accumulation in apple fruit. © 2017 Society of Chemical Industry.


Asunto(s)
Calcio/análisis , Malus/química , Zinc/análisis , Calcio/metabolismo , Frutas/química , Frutas/genética , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Malus/genética , Malus/crecimiento & desarrollo , Malus/metabolismo , Valor Nutritivo , Espectrofotometría Atómica , Zinc/metabolismo
18.
Phytochemistry ; 134: 38-45, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27884449

RESUMEN

The chalcone synthase superfamily consists of type III polyketidesynthases (PKSs), enzymes responsible for producing plant secondary metabolites with various biological and pharmacological activities. Anther-specific chalcone synthase-like enzymes (ASCLs) represent an ancient group of type III PKSs involved in the biosynthesis of sporopollenin, the main component of the exine layer of moss spores and mature pollen grains of seed plants. In the latter, ASCL proteins are localized in the tapetal cells of the anther where they participate in sporopollenin biosynthesis and exine formation within the locule. It is thought that the enzymes responsible for sporopollenin biosynthesis are highly conserved, and thus far, each angiosperm species with a genome sequenced has possessed two ASCL genes, which in Arabidopsis thaliana are PKSA and PKSB. The Gerbera hybrida (gerbera) PKS protein family consists of three chalcone synthases (GCHS1, GCHS3 and GCHS4) and three 2-pyrone synthases (G2PS1, G2PS2 and G2PS3). In previous studies we have demonstrated the functions of chalcone synthases in flavonoid biosynthesis, and the involvement of 2-pyrone synthases in the biosynthesis of antimicrobial compounds found in gerbera. In this study we expanded the gerbera PKS-family by functionally characterizing two gerbera ASCL proteins. In vitro enzymatic studies using purified recombinant proteins showed that both GASCL1 and GASCL2 were able to use medium and long-chain acyl-CoA starters and perform two to three condensation reactions of malonyl-CoA to produce tri- and tetraketide 2-pyrones, usually referred to as alpha-pyrones in sporopollenin literature. Both GASCL1 and GASCL2 genes were expressed only in floral organs, with most expression observed in anthers. In the anthers, transcripts of both genes showed strict tapetum-specific localization.


Asunto(s)
Asteraceae/enzimología , Asteraceae/genética , Flores/metabolismo , Sintasas Poliquetidas/metabolismo , Acilcoenzima A/metabolismo , Aciltransferasas/metabolismo , Biopolímeros , Carotenoides , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Polen/metabolismo , Sintasas Poliquetidas/genética , Pironas/metabolismo , Proteínas Recombinantes/metabolismo
19.
Front Plant Sci ; 7: 1557, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27818667

RESUMEN

Anthocyanin accumulation is responsible for flower coloration in peach. Here, we report the identification and functional characterization of eight flavonoid-related R2R3-MYB transcription factors, designated PpMYB10.2, PpMYB9, PpMYBPA1, Peace, PpMYB17, PpMYB18, PpMYB19, and PpMYB20, respectively, in peach flower transcriptome. PpMYB10.2 and PpMYB9 are able to activate transcription of anthocyanin biosynthetic genes, whilst PpMYBPA1 and Peace have a strong activation on the promoters of proanthocyanin (PA) biosynthetic genes. PpMYB17-20 show a strong repressive effect on transcription of flavonoid pathway genes such as dihydroflavonol 4-reductase. These results indicate that anthocyanin accumulation in peach flower is coordinately regulated by a set of R2R3-MYB genes. In addition, PpMYB9 and PpMYB10.2 are closely related but separated into two groups, designated MYB9 and MYB10, respectively. PpMYB9 shows a strong activation on the PpUGT78A2 promoter, but with no effect on the promoter of PpUGT78B (commonly called PpUFGT in previous studies). In contrast, PpMYB10.2 is able to activate the PpUFGT promoter, but not for the PpUGT78A2 promoter. Unlike the MYB10 gene that is universally present in plants, the MYB9 gene is lost in most dicot species. Therefore, the PpMYB9 gene represents a novel group of anthocyanin-related MYB activators, which may have diverged in function from the MYB10 genes. Our study will aid in understanding the complex mechanism regulating floral pigmentation in peach and functional divergence of the R2R3-MYB gene family in plants.

20.
Plant J ; 87(6): 548-58, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27227340

RESUMEN

Gerbera (Gerbera hybrida) is an economically important ornamental species and a model plant of the Asteraceae family for flower development and secondary metabolism. Gerberin and parasorboside, two bitter tasting glucosidic lactones, are produced in high amounts in nearly all gerbera tissues. Gerbera and its close relatives also produce a rare coumarin, 4-hydroxy-5-methylcoumarin (HMC). Unlike most coumarins, 5-methylcoumarins have been suggested to be derived through the acetate-malonate pathway. All of these polyketide-derived glucosylated molecules are considered to have a role in defense against herbivores and phytopathogens in gerbera. Gerbera expresses three genes encoding 2-pyrone synthases (G2PS1-3). The enzymes are chalcone synthase-like polyketide synthases with altered starter substrate specificity. We have shown previously that G2PS1 is responsible for the synthesis of 4-hydroxy-6-methyl-2-pyrone (triacetolactone), a putative precursor of gerberin and parasorboside. Here we show that polyketide synthases G2PS2 and G2PS3 are necessary for the biosynthesis of HMC in gerbera, and that a reductase enzyme is likely required to complete the pathway to HMC. G2PS2 is expressed in the leaf blade and inflorescences of gerbera, while G2PS3 is strictly root specific. Heterologous expression of G2PS2 or G2PS3 in tobacco leads to the formation of 4,7-dihydroxy-5-methylcoumarin, apparently an unreduced precursor of HMC, while ectopic expression in gerbera leads to HMC formation in tissues where nontransgenic tissue does not express the genes and does not accumulate the compound. Using protein modelling and site-directed mutagenesis we identified the residues I203 and T344 in G2PS2 and G2PS3 to be critical for pentaketide synthase activity.


Asunto(s)
Asteraceae/metabolismo , Cumarinas/metabolismo , Proteínas de Plantas/metabolismo , Sintasas Poliquetidas/metabolismo , Aciltransferasas/genética , Aciltransferasas/metabolismo , Asteraceae/genética , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Sintasas Poliquetidas/química , Sintasas Poliquetidas/genética , Pironas/metabolismo , Nicotiana/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...