Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Quant Imaging Med Surg ; 14(8): 5983-6001, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39144026

RESUMEN

Background: Programmed death ligand-1 (PD-L1) expression serves a predictive biomarker for the efficacy of immune checkpoint inhibitors (ICIs) in the treatment of patients with early-stage lung adenocarcinoma (LA). However, only a limited number of studies have explored the relationship between PD-L1 expression and spectral dual-layer detector-based computed tomography (SDCT) quantification, qualitative parameters, and clinical biomarkers. Therefore, this study was conducted to clarify this relationship in stage I LA and to develop a nomogram to assist in preoperative individualized identification of PD-L1-positive expression. Methods: We analyzed SDCT parameters and PD-L1 expression in patients diagnosed with invasive nonmucinous LA through postoperative pathology. Patients were categorized into PD-L1-positive and PD-L1-negative expression groups based on a threshold of 1%. A retrospective set (N=356) was used to develop and internally validate the radiological and biomarker features collected from predictive models. Univariate analysis was employed to reduce dimensionality, and logistic regression was used to establish a nomogram for predicting PD-L1 expression. The predictive performance of the model was evaluated using receiver operating characteristic (ROC) curves, and external validation was performed in an independent set (N=80). Results: The proportions of solid components and pleural indentations were higher in the PD-L1-positive group, as indicated by the computed tomography (CT) value, CT at 40 keV (CT40keV; a/v), electron density (ED; a/v), and thymidine kinase 1 (TK1) exhibiting a positive correlation with PD-L1 expression. In contrast, the effective atomic number (Zeff; a/v) showed a negative correlation with PD-L1 expression [r=-0.4266 (Zeff.a), -0.1131 (Zeff.v); P<0.05]. After univariate analysis, 18 parameters were found to be associated with PD-L1 expression. Multiple regression analysis was performed on significant parameters with an area under the curve (AUC) >0.6, and CT value [AUC =0.627; odds ratio (OR) =0.993; P=0.033], CT40keV.a (AUC =0.642; OR =1.006; P=0.025), arterial Zeff (Zeff.a) (AUC =0.756; OR =0.102; P<0.001), arterial ED (ED.a) (AUC =0.641; OR =1.158, P<0.001), venous ED (ED.v) (AUC =0.607; OR =0.864; P<0.001), TK1 (AUC =0.601; OR =1.245; P=0.026), and diameter of solid components (Dsolid) (AUC =0.632; OR =1.058; P=0.04) were found to be independent risk factors for PD-L1 expression in stage I LA. These seven predictive factors were integrated into the development of an SDCT parameter-clinical nomogram, which demonstrated satisfactory discrimination ability in the training set [AUC =0.853; 95% confidence interval (CI): 0.76-0.947], internal validation set (AUC =0.824; 95% CI: 0.775-0.874), and external validation set (AUC =0.825; 95% CI: 0.733-0.918). Decision curve analyses also revealed the highest net benefit for the nomogram across a broad threshold probability range (20-80%), with a clinical impact curve (CIC) indicating its clinical validity. Comparisons with other models demonstrated the superior discriminatory accuracy of the nomogram over any individual variable (all P values <0.05). Conclusions: Quantitative parameters derived from SDCT demonstrated the ability to predict for PD-L1 expression in early-stage LA, with Zeff.a being notably effective. The nomogram established in combination with TK1 showed excellent predictive performance and good calibration. This approach may facilitate the improved noninvasive prediction of PD-L1 expression.

2.
Adv Sci (Weinh) ; 11(25): e2401667, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38627981

RESUMEN

Constructing heterojunctions with vacancies has garnered substantial attention in the field of piezo-photocatalysis. However, the presence of interfacial vacancies can serve as charge-trapping sites, leading to the localization of electrons and hindering interfacial charge transfer. Herein, dual oxygen vacancies in the NiFe-layered double hydroxide and Bi2MoO6- x induced interfacial bonds have been designed for the piezo-photocatalytic N2 oxidation to NO3 -. Fortunately, it achieves sensational nitric acid production rates (7.23 mg g-1 h-1) in the absence of cocatalysts and sacrificial agents, which is 6.03 times of pure Bi2MoO6 that under ultrasound and light illumination. Theoretical and experimental results indicate that interfacial bonds act as "charge bridge" and "strain center" to break the carrier local effect and negative effects with piezocatalysis and photocatalysis for promoting exciton dissociation and charge transfer. Moreover, the strong electronic interaction of the interfacial bond induces internal reconstruction under ultrasound for promoting the local polarization and adsorption of N2, which accelerates the fracture of the N≡N bonds and reduces the activation energy of the reaction. The research not only establishes a novel approach for optimizing the combined effects of piezo-catalysis and photocatalysis, but also achieves equilibrium between the synergistic impacts of vacancies and heterojunctions.

3.
Nanomaterials (Basel) ; 14(4)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38392708

RESUMEN

The dual-band polarization-independent all-optical logic gate by coherent absorption effect in an amorphous silicon (a-Si) graphene metasurface is investigated theoretically and numerically. Taking the substrate effect into consideration, the coherent perfect absorption condition of the a-Si graphene metasurface is derived on the basis of the Cartesian multipole method. The coherent nearly perfect absorption of the a-Si graphene metasurface is realized by the interference of multipole moments and the interband transition of monolayer graphene, achieving peak values of 91% and 92% at 894.5 nm and 991.5 nm, respectively. The polarization independence of the coherent absorption is revealed due to the center symmetry of the structure of the a-Si graphene metasurface. The dual-band polarization-independent all-optical XOR and OR logic gates are implemented at 894.5 nm and 991.5 nm by the a-Si graphene metasurface based on the coherent nearly perfect absorption, which has the opportunity to be utilized in all-optical computing, all-optical data processing, and future all-optical networks.

4.
J Colloid Interface Sci ; 656: 528-537, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38007944

RESUMEN

Vacancies engineering has sparked a huge interest in enhancing photocatalytic activity, but monovacancy simultaneously conducts as either electron or hole acceptor and redox reaction, worsening charge transfer and catalytic performance. Here, the concept of electronic inversion has been proposed through the simultaneous introduction of surface oxygen and S vacancies in CdIn2S4 (OSv-CIS). Consequently, under mild conditions, the well-designed OSv-CIS-200 demonstrated a strong rate of N-benzylidenebenzylamine production (2972.07 µmol g-1 h-1) coupled with Hydrogen peroxide (H2O2) synthesis (2362.33 µmol g-1 h-1) (PIH), which is 12.4 times higher than that of CdIn2S4. Density functional theory (DFT) simulation and characterization studies demonstrate that oxygen is introduced into the lattice on the surface of the material, reversing the charge distribution of the S vacancy and enhancing the polarity of the total charge distribution. It not only provides a huge built-in electric field (BEF) for guiding the orientation of the charge transfer, but also acts as a long-distance active site to accelerate reaction and prevent H2O2 decomposition. Our work offers a straightforward connection between the atomic defect and intrinsic properties for designing high-efficiency materials.

5.
PLoS One ; 18(11): e0286944, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37922260

RESUMEN

Bacillus coagulans is a probiotic agent widely used in various industries. In this study, we isolated a novel strain of B. coagulans, X26, from soil and characterized its properties. X26 exhibited superior enzyme, acid, and biomass yields when compared with other bacterial probiotics and an antibiotic. Moreover, X26 significantly improved the body weight of rats, highlighting its potential for industrial development as a supplement for animals. To optimize the fermentation process of this bacterium, we adopted the response surface design. When X26 was cultured in a medium with 16.5 g/L maltose, 25.00 g/L yeast extract, and 3.5 g/L K2HPO4, the optimal yield was predicted to be 5.1 × 109 CFU/mL. Consistent with the prediction, the yield of X26 in a 500-mL flask culture was (5.12 ± 0.01) × 109 CFU/mL, and in a 30-L fermenter was (5.11 ± 0.02) × 109 CFU/mL, accounting for a 9.9-fold higher field than that with a basal medium before optimization. We further optimized the fermentation process in the 30-L and a 10-T fermenter, generating yields of (7.8 ± 0.2) × 109 CFU/mL (spore rate: 96.54%) and (8.7 ± 0.1) × 109 CFU/mL (spore rate: 97.93%), respectively. These yields and spore rates were achieved at 45-55°C, the typical fermentation temperature of B. coagulans. Our findings indicate that B. coagulans X26 is a promising probiotic with considerable potential for cost-effective industrial fermentation.


Asunto(s)
Bacillus coagulans , Probióticos , Ratas , Animales , Fermentación , Reactores Biológicos , Temperatura
6.
Res Sq ; 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37841872

RESUMEN

Functional enrichment analysis is usually used to assess the effects of experimental differences. However, researchers sometimes want to understand the relationship between transcriptomic variation and health outcomes like survival. Therefore, we suggest the use of Survival-based Gene Set Enrichment Analysis (SGSEA) to help determine biological functions associated with a disease's survival. We developed an R package and corresponding Shiny App called SGSEA for this analysis and presented a study of kidney renal clear cell carcinoma (KIRC) to demonstrate the approach. In Gene Set Enrichment Analysis (GSEA), the log-fold change in expression between treatments is used to rank genes, to determine if a biological function has a non-random distribution of altered gene expression. SGSEA is a variation of GSEA using the hazard ratio instead of a log fold change. Our study shows that pathways enriched with genes whose increased transcription is associated with mortality (NES > 0, adjusted p-value < 0.15) have previously been linked to KIRC survival, helping to demonstrate the value of this approach. This approach allows researchers to quickly identify disease variant pathways for further research and provides supplementary information to standard GSEA, all within a single R package or through using the convenient app.

7.
Mol Oncol ; 17(9): 1871-1883, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37496285

RESUMEN

To overcome the dependency of strategies utilizing cell-free DNA (cfDNA) on tissue sampling, the emergence of sequencing panels for non-invasive mutation screening was promoted. However, cfDNA sequencing with panels still suffers from either inaccuracy or omission, and novel approaches for accurately screening tumor mutations solely based on plasma without gene panel restriction are urgently needed. We performed unique molecular identifier (UMI) target sequencing on plasma samples and peripheral blood mononuclear cells (PBMCs) from 85 hepatocellular carcinoma (HCC) patients receiving surgical resection, which were divided into an exploration dataset (20 patients) or an evaluation dataset (65 patients). Plasma mutations were identified in pre-operative plasma, and the mutation variant frequency change (MVFC) between post- and pre-operative plasma was then calculated. In the exploration dataset, we observed that plasma mutations with MVFC < 0.2 were enriched for tumor mutations identified in tumor tissues and had frequency changes that correlated with tumor burden; these plasma mutations were therefore defined as MVFC-identified tumor mutations. The presence of MVFC-identified tumor mutations after surgery was related to shorter relapse-free survival (RFS) in both datasets and thus indicated minimum residual disease (MRD). The combination of MVFC-identified tumor mutations and Alpha Fetoprotein (AFP) could further improve MRD detection (P < 0.0001). Identification of tumor mutations based on MVFC was also confirmed to be applicable with a different gene panel. Overall, we proposed a novel strategy for non-invasive tumor mutation screening using solely plasma that could be utilized in HCC tumor-burden monitoring and MRD detection.


Asunto(s)
Carcinoma Hepatocelular , Ácidos Nucleicos Libres de Células , ADN Tumoral Circulante , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Leucocitos Mononucleares , ADN Tumoral Circulante/genética , Mutación/genética , Biomarcadores de Tumor/genética
8.
J Fungi (Basel) ; 9(5)2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37233258

RESUMEN

Fusarium crown rot (FCR) caused by Fusarium pseudograminearum is one of the most serious soil-borne diseases of wheat. Among 58 bacterial isolates from the rhizosphere soil of winter wheat seedlings, strain YB-1631 was found to have the highest in vitro antagonism to F. pseudograminearum growth. LB cell-free culture filtrates inhibited mycelial growth and conidia germination of F. pseudograminearum by 84.14% and 92.23%, respectively. The culture filtrate caused distortion and disruption of the cells. Using a face-to-face plate assay, volatile substances produced by YB-1631 inhibited F. pseudograminearum growth by 68.16%. In the greenhouse, YB-1631 reduced the incidence of FCR on wheat seedlings by 84.02% and increased root and shoot fresh weights by 20.94% and 9.63%, respectively. YB-1631 was identified as Bacillus siamensis based on the gyrB sequence and average nucleotide identity of the complete genome. The complete genome was 4,090,312 bp with 4357 genes and 45.92% GC content. In the genome, genes were identified for root colonization, including those for chemotaxis and biofilm production, genes for plant growth promotion, including those for phytohormones and nutrient assimilation, and genes for biocontrol activity, including those for siderophores, extracellular hydrolase, volatiles, nonribosomal peptides, polyketide antibiotics, and elicitors of induced systemic resistance. In vitro production of siderophore, ß-1, 3-glucanase, amylase, protease, cellulase, phosphorus solubilization, and indole acetic acid were detected. Bacillus siamensis YB-1631 appears to have significant potential in promoting wheat growth and controlling wheat FCR caused by F. pseudograminearum.

9.
Front Microbiol ; 13: 885430, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35756052

RESUMEN

Cucumber wilt caused by Fusarium oxysporum f.sp. cucumerinum (Foc) is a highly destructive disease that leads to reduced yield in cucumbers. In this study, strain YB-04 was isolated from wheat straw and identified as Bacillus subtilis. It displayed strong antagonistic activity against F. oxysporum f.sp. cucumerinum in dual culture and exhibited significant biocontrol of cucumber Fusarium wilt with a higher control effect than those of previously reported Bacillus strains and displayed pronounced growth promotion of cucumber seedlings. B. subtilis YB-04 could secrete extracellular protease, amylase, cellulose, and ß-1,3-glucanase and be able to produce siderophores and indole acetic acid. Inoculation with B. subtilis YB-04 or Foc increased cucumber defense-related enzyme activities for PPO, SOD, CAT, PAL, and LOX. However, the greatest increase was with the combination of B. subtilis YB-04 and Foc. Sequencing the genome of B. subtilis YB-04 showed that it had genes for the biosynthesis of various secondary metabolites, carbohydrate-active enzymes, and assimilation of nitrogen, phosphorous, and potassium. B. subtilis YB-04 appears to be a promising biological control agent against the Fusarium wilt of cucumber and promotes cucumber growth by genomic, physiological, and phenotypic analysis.

10.
Biology (Basel) ; 11(5)2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35625506

RESUMEN

Fusarium crown rot caused by Fusarium pseudograminearum is one of the most devastating diseases of wheat worldwide causing major yield and economic losses. In this study, strain YB-15 was isolated from soil of wheat rhizosphere and classified as Bacillus subtilis by average nucleotide identity analysis. It significantly reduced Fusarium crown rot with a control efficacy of 81.50% and significantly improved the growth of wheat seedlings by increasing root and shoot fresh weight by 11.4% and 4.2%, respectively. Reduced Fusarium crown rot may have been due to direct antagonism by the production of ß-1, 3-glucanase, amylase, protease and cellulase, or by the ability of B. subtilis YB-15 to induce defense-related enzyme activities of wheat seedlings, both alone and in seedlings infected with F. pseudograminearum. Improved plant growth may be related to the ability of B. subtilis YB-15 to secrete indole acetic acid and siderophores, as well as to solubilize phosphorus. In addition, the genome of strain YB-15 was determined, resulting in a complete assembled circular genome of 4,233,040 bp with GC content of 43.52% consisting of 4207 protein-encoding genes. Sequencing the B. subtilis YB-15 genome further revealed genes for encoding carbohydrate-active enzymes, biosynthesis of various secondary metabolites, nutrient acquisition, phytohormone production, chemotaxis and motility, which could explain the potential of strain YB-15 to be plant growth-promoting bacteria and biological control agent. B. subtilis YB-15 appears to be a promising biocontrol agent against Fusarium crown rot as well as for wheat growth promotion.

12.
Nanomaterials (Basel) ; 11(7)2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34361210

RESUMEN

A plasmonic near-infrared multiple-channel filter is numerically and experimentally investigated based on a gold periodic composite nanocavities metasurface. By the interference among different excited plasmonic modes on the metasurface, the multipeak extraordinary optical transmission (EOT) phenomenon is induced and utilized to realize multiple-channel filtering. Investigated from the simulated transmission spectrum of the metasurface, the positions and intensity of transmission peaks are tuned by the geometrical parameters of the metasurface and environmental refractive index. The fabricated metasurface approached transmission peaks at 1128 nm, 1245 nm, and 1362 nm, functioning as a three-passbands filter. With advantages of brief single-layer fabrication and multi-frequency selectivity, the proposed plasmonic filter has potential possibilities of integration in nano-photonic switching, detecting and biological sensing systems.

13.
Pathogens ; 10(7)2021 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-34358053

RESUMEN

Wheat is a worldwide staple food crop, and take-all caused by Gaeumannomyces graminis var. tritici can lead to a tremendous decrease in wheat yield and quality. In this study, strain YB-10 was isolated from wheat rhizospheric soil and identified as Pseudomonas chlororaphis by morphology and 16S rRNA gene sequencing. Pseudomonas chlororaphis YB-10 had extracellular protease and cellulase activities and strongly inhibited the mycelium growth of Gaeumannomyces graminis var. tritici in dual cultures. Up to 87% efficacy of Pseudomonas chlororaphis YB-10 in controlling the take-all of seedlings was observed in pot experiments when wheat seed was coated with the bacterium. Pseudomonas chlororaphis YB-10 was also positive for indole acetic acid (IAA) and siderophore production, and coating wheat seed with the bacterium significantly promoted the growth of seedlings at 107 and 108 CFU/mL. Furthermore, treatment with Pseudomonas chlororaphis YB-10 increased activities of the wheat defense-related enzymes POD, SOD, CAT, PAL and PPO in seedlings, indicating induced resistance against pathogens. Overall, Pseudomonas chlororaphis YB-10 is a promising new seed-coating agent to both promote wheat growth and suppress take-all.

14.
Nanomaterials (Basel) ; 11(6)2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-34208251

RESUMEN

A bidirectional electromagnetically induced transparency (EIT) arising from coupling of magnetic dipole modes is demonstrated numerically and experimentally based on nanoscale a-Si cuboid-bar metasurface. Analyzed by the finite-difference time-domain (FDTD) Solutions, both the bright and dark magnetic dipole mode is excited in the cuboid, while only the dark magnetic dipole mode is excited in the bar. By breaking the symmetry of the cuboid-bar structure, the destructive interference between bright and dark magnetic dipole modes is induced, resulting in the bidirectional EIT phenomenon. The position and amplitude of simulated EIT peak is adjusted by the vertical spacing and horizontal spacing. The EIT metasurface was fabricated by Electron-Beam Lithography and deep silicon etching technique on the a-Si film deposited by Plasma-Enhanced Chemical Vapor Deposition. Measured by a convergent spectrometer, the fabricated sample achieved a bidirectional EIT peak with transmission up to 65% and 63% under forward and backward incidence, respectively. Due to the enhanced magnetic field induced by the magnetic dipole resonance, the fabricated bidirectional EIT metasurface provides a potential way for magnetic sensing and magnetic nonlinearity.

15.
Nanomaterials (Basel) ; 10(9)2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32882830

RESUMEN

A broadband near-perfect absorber is analyzed by an amorphous silicon (a-Si) hook shaped nanostructure metasurface. The transmission and reflection coefficients of the metasurface are investigated in the point electric and magnetic dipole approximation. By combining square and semicircle nanostructures, the effective polarizabilities of the a-Si metasurface calculated based on discrete dipole approximation (DDA) exhibit broadened peaks of electric dipole (ED) and magnetic dipole (MD) Mie resonances. The optical spectra of the metasurface are simulated with different periods, in which suppressed transmission are shifted spectrally to overlap with each other, leading to broadened enhanced absorption induced by interference of ED and MD Mie resonances. The angle insensitive absorption of the metasurface arrives 95% in simulation and 85% in experiment in spectral range from 564 nm to 584 nm, which provides potential applicability in nano-photonic fields of energy harvesting and energy collection.

16.
Opt Express ; 28(12): 17900-17905, 2020 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-32679992

RESUMEN

A dielectric broadened band near-perfect absorber based on an amorphous silicon(a-Si) T-shaped nanostructure metasurface is investigated numerically and experimentally. The simultaneous suppressed transmission and reflection of the a-Si nanostructure metasurface are achieved by investigating the interference of the periodically adjustable electric dipole(ED) and magnetic dipole(MD) Mie resonances. The absorption of the a-Si nanostructure metasurface approaches the maximum of 95% in simulation and 80% in experiment with a top-hat shape in the spectral range from 580 nm to 620 nm by employing the T-shaped nanostructure. The proposed near-perfect absorber provides a new approach for expanding absorption bandwidth by integrating different nanostructures in metasurface, which is potentially applicable in nanophotonic fields of optical isolation, optical trapping and energy harvesting.

17.
Opt Lett ; 45(8): 2295-2298, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32287217

RESUMEN

A nanoscale plasmonic optical differentiator based on subwavelength gold gratings is investigated theoretically and experimentally without Fourier transform lenses and prisms. In the vicinity of surface plasmon resonance (SPR), the transfer function of subwavelength gold gratings is derived by optical scattering matrix theory. Simulated by the finite difference time domain (FDTD) method, the wavelengths of optical spatial differentiation performed by subwavelength gold gratings are tuned by the grating period and duty cycle, while the throughput of edge extraction is mainly adjusted by the grating thickness. Without Fourier transformation, the fabricated plasmonic optical differentiator experimentally achieves real-time optical spatial differentiation in transmission and implements SPR enhanced high-throughput edge extraction of a microscale image with a resolution of 10 µm at 650 nm, which has potential applications in areas of optical analog computing, optical imaging, and optical information processing.

18.
Food Chem ; 314: 126182, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-31968293

RESUMEN

Flavonoids are key determinants of grape quality and wine color. Grapevines growing in alkaline soil are prone to manganese deficiency, which can decrease the contents of secondary metabolites, including flavonoids. We determined the effects of a foliar Mn treatment (MnSO4·H2O) of Cabernet Sauvignon grapevines (V. vinifera L.) growing in alkaline soil on the flavonoid contents in grape skin, and the quality of wine. The Mn treatments were applied in 2017 and 2018, and tended to increase the grape sugars, berry weight, and the contents of phenolic compounds from veraison until harvest. The Mn treatments increased the amounts of acetylated, methylated, and total anthocyanins, as well as the total flavonol contents in grape berry skin at harvest. The wines prepared from these grapes had a higher color intensity than those prepared from grapes from control vines. Foliar-applied MnSO4·H2O can promote flavonoid biosynthesis in grape berries, and improve the color of wine.


Asunto(s)
Agricultura/métodos , Flavonoides/metabolismo , Compuestos de Manganeso/farmacología , Sulfatos/farmacología , Vitis/efectos de los fármacos , Vino/análisis , Antocianinas/análisis , Antocianinas/metabolismo , China , Color , Flavonoides/análisis , Flavonoles/análisis , Flavonoles/metabolismo , Frutas/efectos de los fármacos , Frutas/metabolismo , Fenoles/análisis , Fenoles/metabolismo , Hojas de la Planta , Suelo/química , Vitis/metabolismo
19.
Opt Express ; 26(17): 21768-21777, 2018 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-30130878

RESUMEN

A dual-band polarization-independent coherent perfect absorber(CPA) based on metal-graphene nanostructure is proposed, which is composed of golden nanorings with different sizes on graphene monolayer. Based on the finite-difference time-domain (FDTD) solutions, coherent perfect absorptions of the metal-graphene CPA are achieved at frequencies of 50.54 THz and 43.60 THz, which are resulted from the excited surface plasmon resonance induced by different size nanorings. Through varying the relative phase of two incident countering-propagating beams, the absorption peaks are all-optically tuned from 98.3 % and 98.4 % to nearly 0, respectively. By changing the gate-controlled Fermi energy of the graphene layer, the resonance frequencies of the CPA are tuned simultaneously without changing the geometrical parameters. And polarization independence of the metal-graphene CPA is revealed due to the center symmetry of nanoring structure. The electrical tunability of resonance frequency and polarization independence enable the proposed CPA to be widely applied in optoelectronic and engineering technology areas for tunable active multiple-band regulation and control.

20.
Opt Express ; 25(11): 12251-12259, 2017 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-28786583

RESUMEN

A tunable polarization-independent dual-band plasmonically induced transparency (PIT) device based on metal-graphene nanostructures is proposed theoretically and numerically at mid-infrared frequencies, which is composed of two kinds of center-symmetric metallic nanostructure array with different sizes and element numbers placed on separate graphene interdigitated finger sets, respectively. The coupled Lorentz oscillator model is used to explain the physical mechanism of PIT effect at multiple frequency domains. The finite-difference time-domain (FDTD) solutions are employed to simulate the characteristics of the polarization-independent metal-graphene PIT device, which is consistent with the theoretical analysis. The PIT peaks, obtained at two frequency domains, are separately and dynamically modulated by varying the Fermi energy of corresponding graphene finger set without changing the geometrical parameter of the metallic nanostructure. By the carefully selected element numbers of nanostructure arrays, the resonance strength of the PIT peaks at two frequency domains are nearly close. And the PIT device has identical response to the various polarized incident field due to the center symmetry of the metallic nanostructure, which have advantages in practical applications with no polarization-dependent loss.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA