Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ScientificWorldJournal ; 2014: 626421, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25386608

RESUMEN

East China Sea (ECS) Storm Surge Modeling System (ESSMS) is developed based on Regional Ocean Modeling System (ROMS). Case simulation is performed on the Typhoon Soulik, which landed on the coastal region of Fujian Province, China, at 6 pm of July 13, 2013. Modeling results show that the maximum tide level happened at 6 pm, which was also the landing time of Soulik. This accordance may lead to significant storm surge and water level rise in the coastal region. The water level variation induced by high winds of Soulik ranges from -0.1 to 0.15 m. Water level generally increases near the landing place, in particular on the left hand side of the typhoon track. It is calculated that 0.15 m water level rise in this region can cause a submerge increase of ~0.2 km(2), which could be catastrophic to the coastal environment and the living. Additionally, a Globe Visualization System (GVS) is realized on the basis of World Wind to better provide users with the typhoon/storm surge information. The main functions of GVS include data indexing, browsing, analyzing, and visualization. GVS is capable of facilitating the precaution and mitigation of typhoon/storm surge in ESC in combination with ESSMS.


Asunto(s)
Tormentas Ciclónicas , Desastres , Modelos Teóricos , Océanos y Mares , China , Humanos , Tiempo (Meteorología) , Viento
2.
ScientificWorldJournal ; 2014: 838701, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24587758

RESUMEN

The Argo-derived background diapycnal mixing (BDM) proposed by Deng et al. (in publish) is introduced to and applied in Hybrid Coordinate Ocean Model (HYCOM). Sensitive experiments are carried out using HYCOM to detect the responses of ocean surface temperature and Meridional Overturning Circulation (MOC) to BDM in a global context. Preliminary results show that utilizing a constant BDM, with the same order of magnitude as the realistic one, may cause significant deviation in temperature and MOC. It is found that the dependence of surface temperature and MOC on BDM is prominent. Surface temperature is decreased with the increase of BDM, because diapycnal mixing can promote the deep cold water return to the upper ocean. Comparing to the control run, more striking MOC changes can be caused by the larger variation in BDM.


Asunto(s)
Hidrodinámica , Modelos Teóricos , Océanos y Mares , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA