Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 856(Pt 1): 158764, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36116639

RESUMEN

The ozone-activated peroxymonosulfate process (O3/PMS) has received increasing attention for the removal of trace organic contaminants (e.g. pesticides and pharmaceuticals) from water bodies. However, the ozone dosing strategy has not yet been properly investigated, especially in real water matrices. Typically, one-step dosing is applied in literature. Nevertheless, optimal dosing is an important step for improving the process. This study investigates the effect of sequential ozone dosing on the PMS activation, atrazine (ATZ) removal, residual ozone concentration and radical exposure, and compares the results to those of a one-step ozone dosing approach. Experiments were performed in three water matrices with a different (in)organic content, i.e. secondary effluent, surface water and groundwater. In all matrices, the highest PMS activation was reached when applying three sequential ozone doses (3 × 5 mg O3/L). This resulted in a 3 times higher ATZ removal efficiency (up to 46 %) in secondary effluent compared to that obtained with a one-step ozone dosing (15 mg O3/L). In surface water and groundwater, similar ATZ removal (>90 %) was observed among the different ozone dosing strategies. However, the sulfate radical (SO4●-) exposure increased after each ozone addition. After three ozone additions of 5 mg/L, SO4●- contributed for 9 %, 26 % and 54 % to ATZ removal in respectively secondary effluent, surface water and groundwater. This high SO4●- contribution compared to ●OH contribution is an advantage as the selectivity of SO4●- gives rise to less radical scavenging by bulk organic matter and thus increases the (cost-)effectiveness of the O3/PMS process.


Asunto(s)
Atrazina , Ozono , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Oxidación-Reducción , Atrazina/análisis , Agua
2.
J Hazard Mater ; 360: 204-213, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30099363

RESUMEN

Given the need for innovations in advanced oxidation processes to deal with challenges such as OH scavenging, this paper addresses the removal of pharmaceuticals with a large variety in ozone reactivity (kO3 = 0.15-3 × 105 M-1s-1) by use of the novel ozone-activated peroxymonosulfate (O3/PMS) process. A clear improvement in removal efficiency (up to 5 times higher) is noticed as a result of the generation of SO4- radicals, mainly for slow-ozone reacting compounds (kO3 ≤ 250 M-1s-1) and in the presence of a OH scavenger. Depending on the target compound, SO4- are assessed to contribute for 50-90% to the overall removal of the micropollutants, both in single-compound and mixture experiments. Ozone-based PMS activation occurs at neutral to alkaline pH and, in the presence of a OH scavenger, removal efficiencies during O3/PMS are up to 3 times higher than with the O3/H2O2 process. In optimizing the O3/PMS process, a trade-off has to made between the desired removal and the PMS:O3 ratio. A molar ratio of 1:10 already results in a clear benefit compared to the ozonation process. Further increase of the PMS content up to a 1:1 ratio improved the removal by an additional factor of 1.3-1.5.


Asunto(s)
Peróxidos/química , Preparaciones Farmacéuticas/química , Contaminantes Químicos del Agua/química , Atrazina/química , Clorobenzoatos/química , Oxidación-Reducción , Ozono/química , Purificación del Agua/métodos
3.
Environ Sci Technol ; 51(24): 14233-14243, 2017 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-29172510

RESUMEN

New robust correlation models for real-time monitoring and control of trace organic contaminant (TrOC) removal by ozonation are presented, based on UVA254 and fluorescence surrogates, and developed considering kinetic information. The abatement patterns of TrOCs had inflected shapes, controlled by the reactivity of TrOCs toward ozone and HO• radicals. These novel and generic correlation models will be of importance for WRRF operators to reduce operational costs and minimize byproduct formation. Both UVA254 and fluorescence surrogates could be used to control ΔTrOC, although fluorescence measurements indicated a slightly better reproducibility and an enlarged control range. The generic framework was validated for several WRRFs and correlations for any compound with known kinetic information could be developed solely using the second order reaction rate constant with ozone (kO3). Two distinct reaction phases were defined for which separate linear correlations were obtained. The first was mainly ozone controlled, while the second phase was more related to HO• reactions. Furthermore, parallel factor analysis of the fluorescence spectra enabled monitoring of multiple types of organic matter with different O3 and HO• reactivity. This knowledge is of value for kinetic modeling frameworks and for achieving a better understanding of the occurring changes of organic matter during ozonation.


Asunto(s)
Ozono , Eliminación de Residuos Líquidos , Purificación del Agua , Reproducibilidad de los Resultados , Aguas Residuales , Contaminantes Químicos del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA