Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
JCI Insight ; 6(18)2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34383713

RESUMEN

Myelofibrosis (MF) is a progressive chronic myeloproliferative neoplasm characterized by hyperactivation of JAK/STAT signaling and dysregulation of the transcription factor GATA1 in megakaryocytes (MKs). TGF-ß plays a pivotal role in the pathobiology of MF by promoting BM fibrosis and collagen deposition and by enhancing the dormancy of normal hematopoietic stem cells (HSCs). In this study, we show that MF-MKs elaborated significantly greater levels of TGF-ß1 than TGF-ß2 and TGF-ß3 to a varying degree, and we evaluated the ability of AVID200, a potent TGF-ß1/TGF-ß3 protein trap, to block the excessive TGF-ß signaling. Treatment of human mesenchymal stromal cells with AVID200 significantly reduced their proliferation, decreased phosphorylation of SMAD2, and interfered with the ability of TGF-ß1 to induce collagen expression. Moreover, treatment of MF mononuclear cells with AVID200 led to increased numbers of progenitor cells (PCs) with WT JAK2 rather than mutated JAK2V617F. This effect of AVID200 on MF PCs was attributed to its ability to block TGF-ß1-induced p57Kip2 expression and SMAD2 activation, thereby allowing normal rather than MF PCs to preferentially proliferate and form hematopoietic colonies. To assess the in vivo effects of AVID200, Gata1lo mice, a murine model of MF, were treated with AVID200, resulting in the reduction in BM fibrosis and an increase in BM cellularity. AVID200 treatment also increased the frequency and numbers of murine progenitor cells as well as short-term and long-term HSCs. Collectively, these data provide the rationale for TGF-ß1 blockade, with AVID200 as a therapeutic strategy for patients with MF.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Hematopoyesis/efectos de los fármacos , Mielofibrosis Primaria/patología , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta1/antagonistas & inhibidores , Animales , Médula Ósea/patología , Células Cultivadas , Cadena alfa 1 del Colágeno Tipo I/genética , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/metabolismo , Femenino , Fémur , Expresión Génica/efectos de los fármacos , Humanos , Janus Quinasa 2/genética , Masculino , Megacariocitos/metabolismo , Células Madre Mesenquimatosas/metabolismo , Ratones , Mutación , Fosforilación/efectos de los fármacos , Mielofibrosis Primaria/tratamiento farmacológico , Proteína Smad2/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta2/antagonistas & inhibidores , Factor de Crecimiento Transformador beta2/metabolismo , Factor de Crecimiento Transformador beta3/antagonistas & inhibidores , Factor de Crecimiento Transformador beta3/metabolismo
3.
Sci Rep ; 9(1): 1144, 2019 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-30718780

RESUMEN

Axolotls have the amazing ability to regenerate. When compared to humans, axolotls display a very fast wound closure, no scarring and are capable to replace lost appendages perfectly. Understanding the signaling mechanism leading to this perfect healing is a key step to help develop regenerative treatments for humans. In this paper, we studied cellular pathways leading to axolotl limb regeneration. We focus on the wound closure phase where keratinocytes migrate to close the lesion site and how epithelial to mesenchymal transitions are involved in this process. We observe a correlation between wound closure and EMT marker expression. Functional analyses using pharmacological inhibitors showed that the TGF-ß/SMAD (canonical) and the TGF-ß/p38/JNK (non-canonical) pathways play a role in the rate to which the keratinocytes can migrate. When we treat the animals with a combination of inhibitors blocking both canonical and non-canonical TGF-ß pathways, it greatly reduced the rate of wound closure and had significant effects on certain known EMT genes.


Asunto(s)
Transición Epitelial-Mesenquimal/fisiología , Extremidades/fisiología , Queratinocitos/citología , Factor de Crecimiento Transformador beta/fisiología , Cicatrización de Heridas/fisiología , Ambystoma mexicanum , Animales , Movimiento Celular , Sistema de Señalización de MAP Quinasas/fisiología , Proteínas Smad/metabolismo
4.
Front Physiol ; 10: 80, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30809154

RESUMEN

Shear stress, a blood flow-induced frictional force, is essential in the control of endothelial cell (EC) homeostasis. High laminar shear stress (HLSS), as observed in straight parts of arteries, assures a quiescent non-activated endothelium through the induction of Krüppel-like transcription factors (KLFs). Connexin40 (Cx40)-mediated gap junctional communication is known to contribute to a healthy endothelium by propagating anti-inflammatory signals between ECs, however, the molecular basis of the transcriptional regulation of Cx40 as well as its downstream effectors remain poorly understood. Here, we show that flow-induced KLF4 regulated Cx40 expression in a mouse EC line. Chromatin immunoprecipitation in ECs revealed that KLF4 bound to three predicted KLF consensus binding sites in the Cx40 promoter. HLSS-dependent induction of Cx40 expression was confirmed in primary human ECs. The downstream effects of Cx40 modulation in ECs exposed to HLSS were elucidated by an unbiased transcriptomics approach. Cell cycle progression was identified as an important downstream target of Cx40 under HLSS. In agreement, an increase in the proportion of proliferating cell nuclear antigen (PCNA)-positive ECs and a decrease in the proportion of ECs in the G0/G1 phase were observed under HLSS after Cx40 silencing. Transfection of communication-incompetent HeLa cells with Cx40 demonstrated that the regulation of proliferation by Cx40 was not limited to ECs. Using a zebrafish model, we finally showed faster intersegmental vessel growth and branching into the dorsal longitudinal anastomotic vessel in embryos knock-out for the Cx40 orthologs Cx41.8 and Cx45.6. Most significant effects were observed in embryos with a mutant Cx41.8 encoding for a channel with reduced gap junctional function. Faster intersegmental vessel growth in Cx41.8 mutant embryos was associated with increased EC proliferation as assessed by PH3 immunostaining. Our data shows a novel evolutionary-conserved role of flow-driven KLF4-dependent Cx40 expression in endothelial quiescence that may be relevant for the control of atherosclerosis and diseases involving sprouting angiogenesis.

5.
Oncotarget ; 8(31): 50972-50986, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28881621

RESUMEN

Connexins are proteins forming gap junction channels for intercellular communication. Connexin40 (Cx40) is highly expressed by endothelial cells (ECs) of healthy arteries but this expression is lost in ECs overlying atherosclerotic plaques. Low/oscillatory shear stress observed in bends and bifurcations of arteries is atherogenic partly through activation of the pro-inflammatory NFκB pathway in ECs. In this study, we investigated the relation between shear stress, Cx40 and NFκB. Shear stress-modifying casts were placed around carotid arteries of mice expressing eGFP under the Cx40 promoter (Cx40+/eGFP ). We found that Cx40 expression is decreased in carotid regions of oscillatory shear stress but conserved in high and low laminar shear stress regions. These results were confirmed in vitro. Using phage display, we retrieved a binding motif for the intracellular regulatory Cx40 C-terminus (Cx40CT), i.e. HS[I, L, V][K, R]. One of the retrieved peptides (HSLRPEWRMPGP) showed a 58.3% homology with amino acids 5-to-16 of IκBα, a member of the protein complex inhibiting NFκB activation. Binding of IκBα (peptide) and Cx40 was confirmed by crosslinking and en face proximity ligation assay on carotid arteries. TNFα-induced nuclear translocation of NFκB in ECs was enhanced after reducing Cx40 with siRNA. Transfection of HeLa cells with either full-length Cx40 or Cx40CT demonstrated that Cx40CT was sufficient for inhibition of TNFα-induced NFκB phosphorylation. Finally, Tie2CreTgCx40fl/flApoe-/- mice showed exaggerated shear stress-induced atherosclerosis and enhanced NFκB nuclear translocation. Our data show a novel functional IκBα-Cx40 interaction that may be relevant for the control of NFκB activation by shear stress in atherogenesis.

6.
Biol Open ; 6(6): 891-896, 2017 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-28500032

RESUMEN

Senescence represents a mechanism to avoid undesired cell proliferation that plays a role in tumor suppression, wound healing and embryonic development. In order to gain insight on the evolution of senescence, we looked at its presence in developing axolotls (urodele amphibians) and in zebrafish (teleost fish), which are both anamniotes. Our data indicate that cellular senescence is present in various developing structures in axolotls (pronephros, olfactory epithelium of nerve fascicles, lateral organs, gums) and in zebrafish (epithelium of the yolk sac and in the lower part of the gut). Senescence was particularly associated with transient structures (pronephros in axolotls and yolk sac in zebrafish) suggesting that it may play a role in the elimination of these tissues. Our data supports the notion that cellular senescence evolved early in vertebrate evolution to influence embryonic development.

7.
Development ; 143(19): 3481-3490, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27549395

RESUMEN

Axolotls are unique among vertebrates in their ability to regenerate tissues, such as limbs, tail and skin. The axolotl limb is the most studied regenerating structure. The process is well characterized morphologically; however, it is not well understood at the molecular level. We demonstrate that TGF-ß1 is highly upregulated during regeneration and that TGF-ß signaling is necessary for the regenerative process. We show that the basement membrane is not prematurely formed in animals treated with the TGF-ß antagonist SB-431542. More importantly, Smad2 and Smad3 are differentially regulated post-translationally during the preparation phase of limb regeneration. Using specific antagonists for Smad2 and Smad3 we demonstrate that Smad2 is responsible for the action of TGF-ß during regeneration, whereas Smad3 is not required. Smad2 target genes (Mmp2 and Mmp9) are inhibited in SB-431542-treated limbs, whereas non-canonical TGF-ß targets (e.g. Mmp13) are unaffected. This is the first study to show that Smad2 and Smad3 are differentially regulated during regeneration and places Smad2 at the heart of TGF-ß signaling supporting the regenerative process.


Asunto(s)
Extremidades/fisiología , Regeneración/efectos de los fármacos , Proteína Smad2/metabolismo , Proteína smad3/metabolismo , Ambystoma mexicanum/metabolismo , Ambystoma mexicanum/fisiología , Animales , Apoptosis/efectos de los fármacos , Membrana Basal/efectos de los fármacos , Membrana Basal/metabolismo , Benzamidas/farmacología , Western Blotting , Dioxoles/farmacología , Técnica del Anticuerpo Fluorescente , Regeneración/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/efectos de los fármacos , Proteína Smad2/genética , Proteína smad3/genética , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Factor de Crecimiento Transformador beta/metabolismo
8.
Methods Mol Biol ; 1290: 187-96, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25740487

RESUMEN

The use of cells grown in vitro has been instrumental for multiple aspects of biomedical research and especially molecular and cellular biology. The ability to grow cells from multicellular organisms like humans, squids, or salamanders is important to simplify the analyses and experimental designs to help understand the biology of these organisms. The advent of the first cell culture has allowed scientists to tease apart the cellular functions, and in many situations these experiments help understand what is happening in the whole organism. In this chapter, we describe techniques for the culture and genetic manipulation of an established cell line from axolotl, a species widely used for studying epimorphic regeneration.


Asunto(s)
Ambystoma mexicanum/genética , Técnicas de Cultivo de Célula/métodos , Transfección/métodos , Animales , Línea Celular , Criopreservación , Electroporación , Lípidos/farmacología , Plásmidos/genética , Factores de Tiempo
9.
Adv Wound Care (New Rochelle) ; 2(5): 250-260, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24527347

RESUMEN

SIGNIFICANCE: The skin is our largest organ, with the primary role of protection against assaults from the outside world. It also suffers frequent damage, from minor scrapes to, more rarely, complete destruction such as in third-degree burns. It is therefore, by its nature, an organ that would benefit tremendously from being able to regenerate itself. RECENT ADVANCES: This review highlights the axolotl, a less well-known model organism capable of scarless wound healing and regeneration. Axolotls are salamanders with unsurpassed healing and regenerative capacities. Understanding how these animals can regenerate their tissues could help identify the pathways that need to be activated or inhibited in humans to improve wound healing. CRITICAL ISSUES: Presently, there are no therapies leading to skin regeneration or scarless wound healing. Various animal models have thus been developed for use in research, such as mice and pigs, to help us understand how wound healing could be improved or stimulated. However, these more common models cannot regenerate and, consequently, cannot direct us toward a solution to regenerate damaged tissues. Axolotls, on the other hand, can regenerate perfectly and therefore may offer avenues to identify molecular targets for therapeutic intervention. FUTURE DIRECTIONS: Identifying signaling pathways regulating tissue regeneration in vertebrate models is important. The use of animals such as axolotls, which hold the secret of full regeneration, will likely play a significant role in helping us achieve scarless wound healing for humans.

10.
Biochem Biophys Res Commun ; 333(1): 28-34, 2005 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-15935991

RESUMEN

In this study, we investigated the relative participation of N-ethylmaleimide-sensitive factor (NSF) in vivo in a complex multistep vesicle trafficking system, the translocation response of GLUT4 to insulin in rat adipose cells. Transfections of rat adipose cells demonstrate that over-expression of wild-type NSF has no effect on total, or basal and insulin-stimulated cell-surface expression of HA-tagged GLUT4. In contrast, a dominant-negative NSF (NSF-D1EQ) can be expressed at a low enough level that it has little effect on total HA-GLUT4, but does reduce both basal and insulin-stimulated cell-surface HA-GLUT4 by approximately 50% without affecting the GLUT4 fold-translocation response to insulin. However, high expression levels of NSF-D1EQ decrease total HA-GLUT4. The inhibitory effect of NSF-D1EQ on cell-surface HA-GLUT4 is reversed when endocytosis is inhibited by co-expression of a dominant-negative dynamin (dynamin-K44A). Moreover, NSF-D1EQ does not affect cell-surface levels of constitutively recycling GLUT1 and TfR, suggesting a predominant effect of low-level NSF-D1EQ on the trafficking of GLUT4 from the endocytic recycling compared to the intracellular GLUT4-specific compartment. Thus, our data demonstrate that the multiple fusion steps in GLUT4 trafficking have differential quantitative requirements for NSF activity. This indicates that the rates of plasma and intracellular membrane fusion reactions vary, leading to differential needs for the turnover of the SNARE proteins.


Asunto(s)
Adenosina Trifosfatasas/deficiencia , Tejido Adiposo/metabolismo , Fusión de Membrana/fisiología , Proteínas de Transporte de Monosacáridos/metabolismo , Proteínas Musculares/metabolismo , Transporte de Proteínas/fisiología , Transducción de Señal/fisiología , Vesículas Transportadoras/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Tejido Adiposo/citología , Tejido Adiposo/efectos de los fármacos , Animales , Células Cultivadas , Transportador de Glucosa de Tipo 4 , Insulina/farmacología , Masculino , Proteínas Sensibles a N-Etilmaleimida , Transporte de Proteínas/efectos de los fármacos , Ratas , Transducción de Señal/efectos de los fármacos , Vesículas Transportadoras/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...