Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 9(20): eadf2982, 2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37196091

RESUMEN

The synchronization of circadian clock depends on a central pacemaker located in the suprachiasmatic nuclei. However, the potential feedback of peripheral signals on the central clock remains poorly characterized. To explore whether peripheral organ circadian clocks may affect the central pacemaker, we used a chimeric model in which mouse hepatocytes were replaced by human hepatocytes. Liver humanization led to reprogrammed diurnal gene expression and advanced the phase of the liver circadian clock that extended to muscle and the entire rhythmic physiology. Similar to clock-deficient mice, liver-humanized mice shifted their rhythmic physiology more rapidly to the light phase under day feeding. Our results indicate that hepatocyte clocks can affect the central pacemaker and offer potential perspectives to apprehend pathologies associated with altered circadian physiology.


Asunto(s)
Relojes Circadianos , Ritmo Circadiano , Humanos , Ratones , Animales , Ritmo Circadiano/genética , Hígado/metabolismo , Hepatocitos , Relojes Circadianos/genética , Núcleo Supraquiasmático/metabolismo
2.
J Adv Res ; 43: 163-174, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36585106

RESUMEN

INTRODUCTION: Although the physiological role of the C-terminal hydrolase domain of the soluble epoxide hydrolase (sEH-H) is well investigated, the function of its N-terminal phosphatase activity (sEH-P) remains unknown. OBJECTIVES: This study aimed to assess in vivo the physiological role of sEH-P. METHODS: CRISPR/Cas9 was used to generate a novel knock-in (KI) rat line lacking the sEH-P activity. RESULTS: The sEH-P KI rats has a decreased metabolism of lysophosphatidic acids to monoacyglycerols. KI rats grew almost normally but with less weight and fat mass gain while insulin sensitivity was increased compared to wild-type rats. This lean phenotype was more marked in males than in female KI rats and mainly due to decreased food consumption and enhanced energy expenditure. In fact, sEH-P KI rats had an increased lipolysis allowing to supply fatty acids as fuel to potentiate brown adipose thermogenesis under resting condition and upon cold exposure. The potentiation of thermogenesis was abolished when blocking PPARγ, a nuclear receptor activated by intracellular lysophosphatidic acids, but also when inhibiting simultaneously sEH-H, showing a functional interaction between the two domains. Furthermore, sEH-P KI rats fed a high-fat diet did not gain as much weight as the wild-type rats, did not have increased fat mass and did not develop insulin resistance or hepatic steatosis. In addition, sEH-P KI rats exhibited enhanced basal cardiac mitochondrial activity associated with an enhanced left ventricular contractility and were protected against cardiac ischemia-reperfusion injury. CONCLUSION: Our study reveals that sEH-P is a key player in energy and fat metabolism and contributes together with sEH-H to the regulation of cardiometabolic homeostasis. The development of pharmacological inhibitors of sEH-P appears of crucial importance to evaluate the interest of this promising therapeutic strategy in the management of obesity and cardiac ischemic complications.


Asunto(s)
Epóxido Hidrolasas , Lesiones Cardíacas , Obesidad , Animales , Femenino , Masculino , Ratas , Sistemas CRISPR-Cas , Epóxido Hidrolasas/genética , Epóxido Hidrolasas/metabolismo , Cardiopatías/genética , Cardiopatías/metabolismo , Cardiopatías/patología , Lesiones Cardíacas/genética , Lesiones Cardíacas/metabolismo , Lesiones Cardíacas/patología , Resistencia a la Insulina/genética , Lisofosfolípidos , Obesidad/genética , Obesidad/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Daño por Reperfusión/genética
3.
Cell Rep ; 41(8): 111698, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36417883

RESUMEN

Therapies based on glucagon-like peptide-1 (GLP-1) long-acting analogs and insulin are often used in the treatment of metabolic diseases. Both insulin and GLP-1 receptors are expressed in metabolically relevant brain regions, suggesting a cooperative action. However, the mechanisms underlying the synergistic actions of insulin and GLP-1R agonists remain elusive. In this study, we show that insulin-induced hypoglycemia enhances GLP-1R agonists entry in hypothalamic and area, leading to enhanced whole-body fat oxidation. Mechanistically, this phenomenon relies on the release of tanycyctic vascular endothelial growth factor A, which is selectively impaired after calorie-rich diet exposure. In humans, low blood glucose also correlates with enhanced blood-to-brain passage of insulin, suggesting that blood glucose gates the passage other energy-related signals in the brain. This study implies that the preventing hyperglycemia is important to harnessing the full benefit of GLP-1R agonist entry in the brain and action onto lipid mobilization and body weight loss.


Asunto(s)
Glucemia , Factor A de Crecimiento Endotelial Vascular , Humanos , Glucemia/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Insulina/metabolismo , Homeostasis , Encéfalo/metabolismo
4.
Cell Metab ; 34(10): 1532-1547.e6, 2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36198294

RESUMEN

The hypothalamus is key in the control of energy balance. However, strategies targeting hypothalamic neurons have failed to provide viable options to treat most metabolic diseases. Conversely, the role of astrocytes in systemic metabolic control has remained largely unexplored. Here, we show that obesity promotes anatomically restricted remodeling of hypothalamic astrocyte activity. In the paraventricular nucleus (PVN) of the hypothalamus, chemogenetic manipulation of astrocytes results in bidirectional control of neighboring neuron activity, autonomic outflow, glucose metabolism, and energy balance. This process recruits a mechanism involving the astrocytic control of ambient glutamate levels, which becomes defective in obesity. Positive or negative chemogenetic manipulation of PVN astrocyte Ca2+ signals, respectively, worsens or improves metabolic status of diet-induced obese mice. Collectively, these findings highlight a yet unappreciated role for astrocytes in the direct control of systemic metabolism and suggest potential targets for anti-obesity strategy.


Asunto(s)
Astrocitos , Hipotálamo , Animales , Astrocitos/metabolismo , Metabolismo Energético/fisiología , Glucosa/metabolismo , Ácido Glutámico/metabolismo , Hipotálamo/metabolismo , Ratones , Obesidad/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo
5.
Cell Metab ; 34(7): 1054-1063.e7, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35716660

RESUMEN

Liraglutide, an anti-diabetic drug and agonist of the glucagon-like peptide one receptor (GLP1R), has recently been approved to treat obesity in individuals with or without type 2 diabetes. Despite its extensive metabolic benefits, the mechanism and site of action of liraglutide remain unclear. Here, we demonstrate that liraglutide is shuttled to target cells in the mouse hypothalamus by specialized ependymoglial cells called tanycytes, bypassing the blood-brain barrier. Selectively silencing GLP1R in tanycytes or inhibiting tanycytic transcytosis by botulinum neurotoxin expression not only hampers liraglutide transport into the brain and its activation of target hypothalamic neurons, but also blocks its anti-obesity effects on food intake, body weight and fat mass, and fatty acid oxidation. Collectively, these striking data indicate that the liraglutide-induced activation of hypothalamic neurons and its downstream metabolic effects are mediated by its tanycytic transport into the mediobasal hypothalamus, strengthening the notion of tanycytes as key regulators of metabolic homeostasis.


Asunto(s)
Diabetes Mellitus Tipo 2 , Liraglutida , Animales , Barrera Hematoencefálica , Diabetes Mellitus Tipo 2/metabolismo , Células Ependimogliales , Hipotálamo/metabolismo , Liraglutida/farmacología , Ratones , Obesidad/tratamiento farmacológico , Obesidad/metabolismo
6.
Cell Mol Life Sci ; 78(19-20): 6689-6708, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34559253

RESUMEN

Ghrelin is a stomach-derived peptide hormone with salient roles in the regulation of energy balance and metabolism. Notably, ghrelin is recognized as the most powerful known circulating orexigenic hormone. Here, we systematically investigated the effects of ghrelin on energy homeostasis and found that ghrelin primarily induces a biphasic effect on food intake that has indirect consequences on energy expenditure and nutrient partitioning. We also found that ghrelin-induced biphasic effect on food intake requires the integrity of Agouti-related peptide/neuropeptide Y-producing neurons of the hypothalamic arcuate nucleus, which seem to display a long-lasting activation after a single systemic injection of ghrelin. Finally, we found that different autonomic, hormonal and metabolic satiation signals transiently counteract ghrelin-induced food intake. Based on our observations, we propose a heuristic model to describe how the orexigenic effect of ghrelin and the anorectic food intake-induced rebound sculpt a timely constrain feeding response to ghrelin.


Asunto(s)
Ingestión de Alimentos/efectos de los fármacos , Ghrelina/farmacología , Heurística/efectos de los fármacos , Animales , Metabolismo Energético/efectos de los fármacos , Homeostasis/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuropéptido Y/metabolismo
8.
Sci Adv ; 7(1)2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33523852

RESUMEN

Unbalanced energy partitioning participates in the rise of obesity, a major public health concern in many countries. Increasing basal energy expenditure has been proposed as a strategy to fight obesity yet raises efficiency and safety concerns. Here, we show that mice deficient for a muscle-specific enzyme of very-long-chain fatty acid synthesis display increased basal energy expenditure and protection against high-fat diet-induced obesity. Mechanistically, muscle-specific modulation of the very-long-chain fatty acid pathway was associated with a reduced content of the inner mitochondrial membrane phospholipid cardiolipin and a blunted coupling efficiency between the respiratory chain and adenosine 5'-triphosphate (ATP) synthase, which was restored by cardiolipin enrichment. Our study reveals that selective increase of lipid oxidative capacities in skeletal muscle, through the cardiolipin-dependent lowering of mitochondrial ATP production, provides an effective option against obesity at the whole-body level.

9.
Nat Commun ; 11(1): 6127, 2020 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-33257663

RESUMEN

Excessive glucose production by the liver is a key factor in the hyperglycemia observed in type 2 diabetes mellitus (T2DM). Here, we highlight a novel role of liver kinase B1 (Lkb1) in this regulation. We show that mice with a hepatocyte-specific deletion of Lkb1 have higher levels of hepatic amino acid catabolism, driving gluconeogenesis. This effect is observed during both fasting and the postprandial period, identifying Lkb1 as a critical suppressor of postprandial hepatic gluconeogenesis. Hepatic Lkb1 deletion is associated with major changes in whole-body metabolism, leading to a lower lean body mass and, in the longer term, sarcopenia and cachexia, as a consequence of the diversion of amino acids to liver metabolism at the expense of muscle. Using genetic, proteomic and pharmacological approaches, we identify the aminotransferases and specifically Agxt as effectors of the suppressor function of Lkb1 in amino acid-driven gluconeogenesis.


Asunto(s)
Aminoácidos/metabolismo , Gluconeogénesis/fisiología , Hígado/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Quinasas Activadas por AMP , Animales , Caquexia , Diabetes Mellitus Tipo 2/metabolismo , Ayuno , Femenino , Glucosa/metabolismo , Hepatocitos/metabolismo , Hiperglucemia/metabolismo , Masculino , Ratones , Ratones Noqueados , Proteínas Serina-Treonina Quinasas/genética , Proteómica , Sarcopenia , Transaminasas/metabolismo
10.
Hepatology ; 72(2): 656-670, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31785104

RESUMEN

BACKGROUND AND AIMS: Genetically modified mice have been used extensively to study human disease. However, the data gained are not always translatable to humans because of major species differences. Liver-humanized mice (LHM) are considered a promising model to study human hepatic and systemic metabolism. Therefore, we aimed to further explore their lipoprotein metabolism and to characterize key hepatic species-related, physiological differences. APPROACH AND RESULTS: Fah-/- , Rag2-/- , and Il2rg-/- knockout mice on the nonobese diabetic (FRGN) background were repopulated with primary human hepatocytes from different donors. Cholesterol lipoprotein profiles of LHM showed a human-like pattern, characterized by a high ratio of low-density lipoprotein to high-density lipoprotein, and dependency on the human donor. This pattern was determined by a higher level of apolipoprotein B100 in circulation, as a result of lower hepatic mRNA editing and low-density lipoprotein receptor expression, and higher levels of circulating proprotein convertase subtilisin/kexin type 9. As a consequence, LHM lipoproteins bind to human aortic proteoglycans in a pattern similar to human lipoproteins. Unexpectedly, cholesteryl ester transfer protein was not required to determine the human-like cholesterol lipoprotein profile. Moreover, LHM treated with GW3965 mimicked the negative lipid outcomes of the first human trial of liver X receptor stimulation (i.e., a dramatic increase of cholesterol and triglycerides in circulation). Innovatively, LHM allowed the characterization of these effects at a molecular level. CONCLUSIONS: LHM represent an interesting translatable model of human hepatic and lipoprotein metabolism. Because several metabolic parameters displayed donor dependency, LHM may also be used in studies for personalized medicine.


Asunto(s)
Benzoatos/farmacocinética , Bencilaminas/farmacocinética , Colesterol/metabolismo , Hepatocitos/metabolismo , Lipoproteínas/metabolismo , Receptores X del Hígado/agonistas , Hígado/metabolismo , Animales , Hepatocitos/trasplante , Humanos , Hígado/cirugía , Masculino , Ratones , Ratones Noqueados
12.
Cell Metab ; 30(4): 754-767.e9, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31422903

RESUMEN

Autophagy facilitates the adaptation to nutritional stress. Here, we show that short-term starvation of cultured cells or mice caused the autophagy-dependent cellular release of acyl-CoA-binding protein (ACBP, also known as diazepam-binding inhibitor, DBI) and consequent ACBP-mediated feedback inhibition of autophagy. Importantly, ACBP levels were elevated in obese patients and reduced in anorexia nervosa. In mice, systemic injection of ACBP protein inhibited autophagy, induced lipogenesis, reduced glycemia, and stimulated appetite as well as weight gain. We designed three approaches to neutralize ACBP, namely, inducible whole-body knockout, systemic administration of neutralizing antibodies, and induction of antiACBP autoantibodies in mice. ACBP neutralization enhanced autophagy, stimulated fatty acid oxidation, inhibited appetite, reduced weight gain in the context of a high-fat diet or leptin deficiency, and accelerated weight loss in response to dietary changes. In conclusion, neutralization of ACBP might constitute a strategy for treating obesity and its co-morbidities.


Asunto(s)
Inhibidor de la Unión a Diazepam/metabolismo , Ingestión de Alimentos , Lipogénesis , Macroautofagia , Obesidad/metabolismo , Animales , Anorexia Nerviosa/metabolismo , Línea Celular , Ácidos Grasos/metabolismo , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Aumento de Peso , Pérdida de Peso
13.
FEBS Lett ; 593(8): 831-841, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30883722

RESUMEN

Recent studies have revealed a possible link between the activities of polymorphic arylamine N-acetyltransferases (NATs) and energy metabolism. We used a Nat1/Nat2 double knockout (KO) mouse model to demonstrate that ablation of the two Nat genes is associated with modest, intermittent alterations in respiratory exchange rate. Pyruvate tolerance tests show that double KO mice have attenuated hepatic gluconeogenesis when maintained on a high-fat/high-sucrose diet. Absence of the two Nat genes also leads to an increase in the hepatic concentration of coenzyme A in mice fed a high-fat/high-sucrose diet. Our results suggest a modest involvement of NAT in energy metabolism in mice, which is consistent with the absence of major phenotypic deregulation of energy metabolism in slow human acetylators.


Asunto(s)
Arilamina N-Acetiltransferasa/deficiencia , Arilamina N-Acetiltransferasa/genética , Metabolismo Energético/genética , Animales , Coenzima A/metabolismo , Dieta Alta en Grasa/efectos adversos , Técnicas de Inactivación de Genes , Gluconeogénesis/genética , Humanos , Hígado/metabolismo , Ratones
14.
Mol Metab ; 18: 120-133, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30274714

RESUMEN

OBJECTIVE: Neuropeptide Y (NPY) is one of the most potent orexigenic peptides. The hypothalamic paraventricular nucleus (PVN) is a major locus where NPY exerts its effects on energy homeostasis. We investigated how NPY exerts its effect within the PVN. METHODS: Patch clamp electrophysiology and Ca2+ imaging were used to understand the involvement of Ca2+ signaling and retrograde transmitter systems in the mediation of NPY induced effects in the PVN. Immuno-electron microscopy were performed to elucidate the subcellular localization of the elements of nitric oxide (NO) system in the parvocellular PVN. In vivo metabolic profiling was performed to understand the role of the endocannabinoid and NO systems of the PVN in the mediation of NPY induced changes of energy homeostasis. RESULTS: We demonstrated that NPY inhibits synaptic inputs of parvocellular neurons in the PVN by activating endocannabinoid and NO retrograde transmitter systems via mobilization of Ca2+ from the endoplasmic reticulum, suggesting that NPY gates the synaptic inputs of parvocellular neurons in the PVN to prevent the influence of non-feeding-related inputs. While intraPVN administered NPY regulates food intake and locomotor activity via NO signaling, the endocannabinoid system of the PVN selectively mediates NPY-induced decrease in energy expenditure. CONCLUSION: Thus, within the PVN, NPY stimulates the release of endocannabinoids and NO via Ca2+-influx from the endoplasmic reticulum. Both transmitter systems appear to have unique roles in the mediation of the NPY-induced regulation of energy homeostasis, suggesting that NPY regulates food intake, energy expenditure, and locomotor activity through different neuronal networks of this nucleus.


Asunto(s)
Endocannabinoides/metabolismo , Metabolismo Energético , Neuropéptido Y/metabolismo , Óxido Nítrico/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Animales , Señalización del Calcio , Masculino , Ratones , Núcleo Hipotalámico Paraventricular/fisiología , Potenciales Sinápticos
15.
Artículo en Inglés | MEDLINE | ID: mdl-29896158

RESUMEN

Energy homeostasis is tightly regulated by the central nervous system which responds to nervous and circulating inputs to adapt food intake and energy expenditure. However, the rewarding and motivational aspect of food is tightly dependent of dopamine (DA) release in mesocorticolimbic (MCL) system and could be operant in uncontrolled caloric intake and obesity. Accumulating evidence indicate that manipulating the microbiota-gut-brain axis through prebiotic supplementation can have beneficial impact of the host appetite and body weight. However, the consequences of manipulating the implication of the microbiota-gut-brain axis in the control motivational and hedonic/reinforcing aspects of food are still underexplored. In this study, we investigate whether and how dietary prebiotic fructo-oligosaccharides (FOS) could oppose, or revert, the change in hedonic and homeostatic control of feeding occurring after a 2-months exposure to high-fat high-sugar (HFHS) diet. The reinforcing and motivational components of food reward were assessed using a two-food choice paradigm and a food operant behavioral test in mice exposed to FOS either during or after HFHS exposure. We also performed mRNA expression analysis for key genes involved in limbic and hypothalamic control of feeding. We show in a preventive-like approach, FOS addition of HFHS diet had beneficial impact of hypothalamic neuropeptides, and decreased the operant performance for food but only after an overnight fast while it did not prevent the imbalance in mesolimbic markers for DA signaling induced by palatable diet exposure nor the spontaneous tropism for palatable food when given the choice. However, when FOS was added to control diet after chronic HFHS exposure, although it did not significantly alter body weight loss, it greatly decreased palatable food tropism and consumption and was associated with normalization of MCL markers for DA signaling. We conclude that the nature of the diet (regular chow or HFHS) as well as the timing at which prebiotic supplementation is introduced (preventive or curative) greatly influence the efficacy of the gut-microbiota-brain axis. This crosstalk selectively alters the hedonic or motivational drive to eat and triggers molecular changes in neural substrates involved in the homeostatic and non-homeostatic control of body weight.

16.
Nat Med ; 24(8): 1113-1120, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29942089

RESUMEN

The association between altered gut microbiota, intestinal permeability, inflammation and cardiometabolic diseases is becoming increasingly clear but remains poorly understood1,2. Indoleamine 2,3-dioxygenase is an enzyme induced in many types of immune cells, including macrophages in response to inflammatory stimuli, and catalyzes the degradation of tryptophan along the kynurenine pathway. Indoleamine 2,3-dioxygenase activity is better known for its suppression of effector T cell immunity and its activation of regulatory T cells3,4. However, high indoleamine 2,3-dioxygenase activity predicts worse cardiovascular outcome5-9 and may promote atherosclerosis and vascular inflammation6, suggesting a more complex role in chronic inflammatory settings. Indoleamine 2,3-dioxygenase activity is also increased in obesity10-13, yet its role in metabolic disease is still unexplored. Here, we show that obesity is associated with an increase of intestinal indoleamine 2,3-dioxygenase activity, which shifts tryptophan metabolism from indole derivative and interleukin-22 production toward kynurenine production. Indoleamine 2,3-dioxygenase deletion or inhibition improves insulin sensitivity, preserves the gut mucosal barrier, decreases endotoxemia and chronic inflammation, and regulates lipid metabolism in liver and adipose tissues. These beneficial effects are due to rewiring of tryptophan metabolism toward a microbiota-dependent production of interleukin-22 and are abrogated after treatment with a neutralizing anti-interleukin-22 antibody. In summary, we identify an unexpected function of indoleamine 2,3-dioxygenase in the fine tuning of intestinal tryptophan metabolism with major consequences on microbiota-dependent control of metabolic disease, which suggests indoleamine 2,3-dioxygenase as a potential therapeutic target.


Asunto(s)
Microbioma Gastrointestinal , Salud , Indolamina-Pirrol 2,3,-Dioxigenasa/deficiencia , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Animales , Diabetes Mellitus Tipo 2/metabolismo , Hígado Graso/sangre , Hígado Graso/patología , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/sangre , Inflamación/sangre , Inflamación/patología , Resistencia a la Insulina , Interleucinas/metabolismo , Intestinos/patología , Quinurenina/sangre , Quinurenina/metabolismo , Lipopolisacáridos/sangre , Masculino , Ratones Endogámicos C57BL , Obesidad/sangre , Obesidad/patología , Análisis de Componente Principal , Triptófano/sangre , Triptófano/metabolismo , Interleucina-22
18.
Cell Metab ; 22(4): 646-57, 2015 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-26278050

RESUMEN

Feeding behavior is exquisitely regulated by homeostatic and hedonic neural substrates that integrate energy demand as well as the reinforcing and rewarding aspects of food. Understanding the net contribution of homeostatic and reward-driven feeding has become critical because of the ubiquitous source of energy-dense foods and the consequent obesity epidemic. Hypothalamic agouti-related peptide-secreting neurons (AgRP neurons) provide the primary orexigenic drive of homeostatic feeding. Using models of neuronal inhibition or ablation, we demonstrate that the feeding response to a fast ghrelin or serotonin receptor agonist relies on AgRP neurons. However, when palatable food is provided, AgRP neurons are dispensable for an appropriate feeding response. In addition, AgRP-ablated mice present exacerbated stress-induced anorexia and palatable food intake--a hallmark of comfort feeding. These results suggest that, when AgRP neuron activity is impaired, neural circuits sensitive to emotion and stress are engaged and modulated by food palatability and dopamine signaling.


Asunto(s)
Proteína Relacionada con Agouti/genética , Neuronas/metabolismo , Proteína Relacionada con Agouti/deficiencia , Animales , Dopamina/metabolismo , Ingestión de Alimentos , Hipotálamo/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/citología , Transducción de Señal
19.
Nat Med ; 21(6): 610-8, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25939064

RESUMEN

Accumulation of visceral adipose tissue correlates with elevated inflammation and increased risk of metabolic diseases. However, little is known about the molecular mechanisms that control its pathological expansion. Transcription factor interferon regulatory factor 5 (IRF5) has been implicated in polarizing macrophages towards an inflammatory phenotype. Here we demonstrate that mice lacking Irf5, when placed on a high-fat diet, show no difference in the growth of their epididymal white adipose tissue (epiWAT) but they show expansion of their subcutaneous white adipose tissue, as compared to wild-type (WT) mice on the same diet. EpiWAT from Irf5-deficient mice is marked by accumulation of alternatively activated macrophages, higher collagen deposition that restricts adipocyte size, and enhanced insulin sensitivity compared to epiWAT from WT mice. In obese individuals, IRF5 expression is negatively associated with insulin sensitivity and collagen deposition in visceral adipose tissue. Genome-wide analysis of gene expression in adipose tissue macrophages highlights the transforming growth factor ß1 (TGFB1) gene itself as a direct target of IRF5-mediated inhibition. This study uncovers a new function for IRF5 in controlling the relative mass of different adipose tissue depots and thus insulin sensitivity in obesity, and it suggests that inhibition of IRF5 may promote a healthy metabolic state during this condition.


Asunto(s)
Tejido Adiposo Blanco/metabolismo , Inflamación/genética , Factores Reguladores del Interferón/genética , Obesidad/genética , Animales , Dieta Alta en Grasa , Regulación de la Expresión Génica , Humanos , Inflamación/tratamiento farmacológico , Inflamación/patología , Resistencia a la Insulina/genética , Macrófagos , Ratones , Obesidad/tratamiento farmacológico , Obesidad/patología , Factor de Crecimiento Transformador beta1/biosíntesis
20.
Nat Commun ; 6: 6495, 2015 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-25757720

RESUMEN

Obesity is a pandemic disease associated with many metabolic alterations and involves several organs and systems. The endocannabinoid system (ECS) appears to be a key regulator of energy homeostasis and metabolism. Here we show that specific deletion of the ECS synthesizing enzyme, NAPE-PLD, in adipocytes induces obesity, glucose intolerance, adipose tissue inflammation and altered lipid metabolism. We report that Napepld-deleted mice present an altered browning programme and are less responsive to cold-induced browning, highlighting the essential role of NAPE-PLD in regulating energy homeostasis and metabolism in the physiological state. Our results indicate that these alterations are mediated by a shift in gut microbiota composition that can partially transfer the phenotype to germ-free mice. Together, our findings uncover a role of adipose tissue NAPE-PLD on whole-body metabolism and provide support for targeting NAPE-PLD-derived bioactive lipids to treat obesity and related metabolic disorders.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Microbioma Gastrointestinal/fisiología , Intolerancia a la Glucosa/metabolismo , Obesidad/metabolismo , Fosfolipasa D/genética , Tejido Adiposo Pardo/patología , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/patología , Animales , Distribución de la Grasa Corporal , Frío , Endocannabinoides/metabolismo , Metabolismo Energético/fisiología , Expresión Génica , Intolerancia a la Glucosa/genética , Intolerancia a la Glucosa/microbiología , Intolerancia a la Glucosa/patología , Inflamación , Masculino , Ratones , Ratones Noqueados , Obesidad/genética , Obesidad/microbiología , Obesidad/patología , Fosfolipasa D/deficiencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...