Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
J Bacteriol ; 205(10): e0019623, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37791751

RESUMEN

Antibiotic resistance in bacteria is a growing global concern and has spurred increasing efforts to find alternative therapeutics, such as the use of bacterial viruses, or bacteriophages. One promising approach is to use phages that not only kill pathogenic bacteria but also select phage-resistant survivors that are newly sensitized to traditional antibiotics, in a process called "phage steering." Members of the bacterial genus Burkholderia, which includes various human pathogens, are highly resistant to most antimicrobial agents, including serum immune components, antimicrobial peptides, and polymixin-class antibiotics. However, the application of phages in combination with certain antibiotics can produce synergistic effects that more effectively kill pathogenic bacteria. Herein, we demonstrate that Burkholderia cenocepacia serum resistance is due to intact lipopolysaccharide (LPS) and membranes, and phage-induced resistance altering LPS structure can enhance bacterial sensitivity not only to immune components in serum but also to membrane-associated antibiotics such as colistin. IMPORTANCE Bacteria frequently encounter selection pressure from both antibiotics and lytic phages, but little is known about the interactions between antibiotics and phages. This study provides new insights into the evolutionary trade-offs between phage resistance and antibiotic sensitivity. The creation of phage resistance through changes in membrane structure or lipopolysaccharide composition can simultaneously be a major cause of antibiotic sensitivity. Our results provide evidence of synergistic therapeutic efficacy in phage-antibiotic interactions and have implications for the future clinical use of phage steering in phage therapy applications.


Asunto(s)
Bacteriófagos , Burkholderia cenocepacia , Humanos , Antibacterianos/farmacología , Lipopolisacáridos , Virulencia
2.
Microbiol Spectr ; 11(4): e0097323, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37458599

RESUMEN

Carnobacterium divergens is frequently isolated from natural environments and is a predominant species found in refrigerated foods, particularly meat, seafood, and dairy. While there is substantial interest in using C. divergens as biopreservatives and/or probiotics, some strains are known to be fish pathogens, and the uncontrolled growth of C. divergens has been associated with food spoilage. Bacteriophages offer a selective approach to identify and control the growth of bacteria; however, to date, few phages targeting C. divergens have been reported. In this study, we characterize bacteriophage cd2, which we recently isolated from minced beef. A detailed host range study reveals that phage cd2 infects certain phylogenetic groups of C. divergens. This phage has a latent period of 60 min and a burst size of ~28 PFU/infected cell. The phage was found to be acid and heat sensitive, with a complete loss of phage activity when stored at pH 2 or heated to 60°C. Electron microscopy shows that phage cd2 is a siphophage, and while it shares the B3 morphotype with a unique cluster of Listeria and Enterococcus phages, a comparison of genomes reveals that phage cd2 comprises a new genus of phage, which we have termed as Carnodivirus. IMPORTANCE Currently, very little is known about phages that infect carnobacteria, an important genus of lactic acid bacteria with both beneficial and detrimental effects in the food and aquaculture industries. This report provides a detailed characterization of phage cd2, a novel siphophage that targets Carnobacterium divergens, and sets the groundwork for understanding the biology of these phages and their potential use in the detection and biocontrol of C. divergens isolates.


Asunto(s)
Bacteriófagos , Animales , Bovinos , Bacteriófagos/genética , Filogenia , Carne/microbiología , Carnobacterium
3.
Microbiol Spectr ; 11(3): e0443022, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37195168

RESUMEN

Antimicrobial resistance is a danger to global public health and threatens many aspects of modern medicine. Bacterial species such as those of the Burkholderia cepacia complex (Bcc) cause life-threatening respiratory infections and are highly resistant to antibiotics. One promising alternative being explored to combat Bcc infections is phage therapy (PT): the use of phages to treat bacterial infections. Unfortunately, the utility of PT against many pathogenic species is limited by its prevailing paradigm: that only obligately lytic phages should be used therapeutically. It is thought that 'lysogenic' phages do not lyse all bacteria and can transfer antimicrobial resistance or virulence factors to their hosts. We argue that the tendency of a lysogenization-capable (LC) phage to form stable lysogens is not predicated exclusively on its ability to do so, and that the therapeutic suitability of a phage must be evaluated on a case-by-case basis. Concordantly, we developed several novel metrics-Efficiency of Phage Activity, Growth Reduction Coefficient, and Stable Lysogenization Frequency-and used them to evaluate eight Bcc-specific phages. Although these parameters vary considerably among Bcc phages, a strong inverse correlation (R2 = 0.67; P < 0.0001) exists between lysogen formation and antibacterial activity, indicating that certain LC phages with low frequency of stable lysogenization may be therapeutically efficacious. Moreover, we show that many LC Bcc phages interact synergistically with other phages in the first reported instance of mathematically defined polyphage synergy, and that these interactions result in the eradication of in vitro bacterial growth. Together, these findings reveal a novel therapeutic role for LC phages and challenge the current paradigm of PT. IMPORTANCE The spread of antimicrobial resistance is an imminent threat to public health around the world. Particularly concerning are species of the Burkholderia cepacia complex (Bcc), which cause life-threatening respiratory infections and are notoriously resistant to antibiotics. Phage therapy is a promising alternative being explored to combat Bcc infections and antimicrobial resistance in general, but its utility against many pathogenic species, including the Bcc, is restricted by the currently prevailing paradigm of exclusively using rare obligately lytic phages due to the perception that 'lysogenic' phages are therapeutically unsuitable. Our findings show that many lysogenization-capable phages exhibit powerful in vitro antibacterial activity both alone and through mathematically defined synergistic interactions with other phages, demonstrating a novel therapeutic role for LC phages and therefore challenging the currently prevailing paradigm of PT.


Asunto(s)
Bacteriófagos , Infecciones por Burkholderia , Complejo Burkholderia cepacia , Humanos , Lisogenia , Antibacterianos/farmacología , Infecciones por Burkholderia/microbiología
4.
Viruses ; 15(3)2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36992448

RESUMEN

The world is currently facing a global health crisis due to the rapid increase in antimicrobial-resistant bacterial infections. One of the most concerning pathogens is Acinetobacter baumannii, which is listed as a Priority 1 pathogen by the World Health Organization. This Gram-negative bacterium has many intrinsic antibiotic resistance mechanisms and the ability to quickly acquire new resistance determinants from its environment. A limited number of effective antibiotics against this pathogen complicates the treatment of A. baumannii infections. A potential treatment option that is rapidly gaining interest is "phage therapy", or the clinical application of bacteriophages to selectively kill bacteria. The myoviruses DLP1 and DLP2 (vB_AbaM-DLP_1 and vB_AbaM-DLP_2, respectively) were isolated from sewage samples using a capsule minus variant of A. baumannii strain AB5075. Host range analysis of these phages against 107 A. baumannii strains shows a limited host range, infecting 15 and 21 for phages DLP1 and DLP2, respectively. Phage DLP1 has a large burst size of 239 PFU/cell, a latency period of 20 min, and virulence index of 0.93. In contrast, DLP2 has a smaller burst size of 24 PFU/cell, a latency period of 20 min, and virulence index of 0.86. Both phages show potential for use as therapeutics to combat A. baumannii infections.


Asunto(s)
Acinetobacter baumannii , Bacteriófagos , Bacteriófagos/genética , Especificidad del Huésped , Antibacterianos
5.
Curr Protoc ; 2(11): e594, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36383057

RESUMEN

Healthcare-associated infection with "ESKAPE" pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) is a global health crisis due to their extensive intrinsic antibiotic resistance and the ability to quickly acquire resistance determinants. Alternative treatment options are required to combat this crisis, and one possibility is the use of bacteriophages, or viruses that strictly infect the pathogenic bacteria. Currently, there is a renaissance in research and development into the use of phages to target multi-, extensively, and pan-resistant bacterial infections in humans, known as phage therapy. Using A. baumannii as an example, this article describes the isolation and purification of bacteriophages from sewage and soil samples, as well as general methods used in phage research such as precipitation of phages using polyethylene glycol, host range analysis, single-cell burst size determination, DNA extraction, and restriction fragment length polymorphism analysis. © 2022 National Research Council Canada. Current Protocols © 2022 Wiley Periodicals LLC. Reproduced with the permission of the Minister of Innovation, Science, and Industry. Basic Protocol 1: Isolation of bacteriophages against A. baumannii from sewage samples Alternate Protocol 1: Isolation of bacteriophages against A. baumannii from soil samples Support Protocol 1: Titering a bacteriophage stock Basic Protocol 2: Purification of phage to an axenic working stock Support Protocol 2: Liquid propagation of bacteriophage Basic Protocol 3: Host range analysis using the spot plate method Basic Protocol 4: Single burst size analysis Alternate Protocol 2: One-step growth curve Basic Protocol 5: Precipitation of bacteriophage using PEG 6000 Basic Protocol 6: DNA extraction from dsDNA bacteriophages Basic Protocol 7: Restriction fragment length polymorphism analysis of novel phage genomes.


Asunto(s)
Bacteriófagos , Infecciones Estafilocócicas , Humanos , Bacteriófagos/genética , Aguas del Alcantarillado , ADN , Suelo
6.
Pathogens ; 11(8)2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-36015050

RESUMEN

Resistance to antibiotics in Bacteria is one of the biggest threats to human health. After decades of attempting to isolate or design antibiotics with novel mechanisms of action against bacterial pathogens, few approaches have been successful. Antibacterial drug discovery is now moving towards targeting bacterial virulence factors, especially immune evasion factors. Gram-negative bacteria present some of the most significant challenges in terms of antibiotic resistance. However, they are also able to be eliminated by the component of the innate immune system known as the complement system. In response, Gram-negative bacteria have evolved a variety of mechanisms by which they are able to evade complement and cause infection. Complement resistance mechanisms present some of the best novel therapeutic targets for defending against highly antibiotic-resistant pathogenic bacterial infections.

7.
Sci Rep ; 12(1): 10299, 2022 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-35717537

RESUMEN

Stenotrophomonas maltophilia is a ubiquitous environmental bacterium capable of causing disease in humans. Antibiotics are largely ineffective against this pathogen due to numerous chromosomally encoded antibiotic resistance mechanisms. An alternative treatment option is phage therapy, the use of bacteriophages to selectively kill target bacteria that are causing infection. To this aim, we isolated the Siphoviridae bacteriophage AXL1 (vB_SmaS-AXL_1) from soil and herein describe its characterization. Host range analysis on a panel of 30 clinical S. maltophilia strains reveals a moderate tropism that includes cross-species infection of Xanthomonas, with AXL1 using the type IV pilus as its host surface receptor for infection. Complete genome sequencing and analysis revealed a 63,962 bp genome encoding 83 putative proteins. Comparative genomics place AXL1 in the genus Pamexvirus, along with seven other phages that infect one of Stenotrophomonas, Pseudomonas or Xanthomonas species. Functional genomic analyses identified an AXL1-encoded dihydrofolate reductase enzyme that provides additional resistance to the antibiotic combination trimethoprim-sulfamethoxazole, the current recommended treatment option for S. maltophilia infections. This research characterizes the sixth type IV pilus-binding phage of S. maltophilia and is an example of phage-encoded antibiotic resistance.


Asunto(s)
Bacteriófagos , Infecciones por Bacterias Gramnegativas , Terapia de Fagos , Siphoviridae , Stenotrophomonas maltophilia , Antibacterianos/uso terapéutico , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Humanos , Stenotrophomonas maltophilia/genética , Combinación Trimetoprim y Sulfametoxazol/uso terapéutico
8.
Viruses ; 14(5)2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35632679

RESUMEN

Bacteriophage JC1 is a Podoviridae phage with a C1 morphotype, isolated on host strain Burkholderia cenocepacia Van1. Phage JC1 is capable of infecting an expansive range of Burkholderia cepacia complex (Bcc) species. The JC1 genome exhibits significant similarity and synteny to Bcep22-like phages and to many Ralstonia phages. The genome of JC1 was determined to be 61,182 bp in length with a 65.4% G + C content and is predicted to encode 76 proteins and 1 tRNA gene. Unlike the other Lessieviruses, JC1 encodes a putative helicase gene in its replication module, and it is in a unique organization not found in previously analyzed phages. The JC1 genome also harbours 3 interesting moron genes, that encode a carbon storage regulator (CsrA), an N-acetyltransferase, and a phosphoadenosine phosphosulfate (PAPS) reductase. JC1 can stably lysogenize its host Van1 and integrates into the 5' end of the gene rimO. This is the first account of stable integration identified for Bcep22-like phages. JC1 has a higher global virulence index at 37 °C than at 30 °C (0.8 and 0.21, respectively); however, infection efficiency and lysogen stability are not affected by a change in temperature, and no observable temperature-sensitive switch between lytic and lysogenic lifestyle appears to exist. Although JC1 can stably lysogenize its host, it possesses some desirable characteristics for use in phage therapy. Phage JC1 has a broad host range and requires the inner core of the bacterial LPS for infection. Bacteria that mutate to evade infection by JC1 may develop a fitness disadvantage as seen in previously characterized LPS mutants lacking inner core.


Asunto(s)
Bacteriófagos , Podoviridae , Bacteriófagos/genética , Genoma Viral , Especificidad del Huésped , Lipopolisacáridos , Podoviridae/genética
9.
Viruses ; 13(7)2021 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-34372537

RESUMEN

The increasing prevalence and worldwide distribution of multidrug-resistant bacterial pathogens is an imminent danger to public health and threatens virtually all aspects of modern medicine. Particularly concerning, yet insufficiently addressed, are the members of the Burkholderia cepacia complex (Bcc), a group of at least twenty opportunistic, hospital-transmitted, and notoriously drug-resistant species, which infect and cause morbidity in patients who are immunocompromised and those afflicted with chronic illnesses, including cystic fibrosis (CF) and chronic granulomatous disease (CGD). One potential solution to the antimicrobial resistance crisis is phage therapy-the use of phages for the treatment of bacterial infections. Although phage therapy has a long and somewhat checkered history, an impressive volume of modern research has been amassed in the past decades to show that when applied through specific, scientifically supported treatment strategies, phage therapy is highly efficacious and is a promising avenue against drug-resistant and difficult-to-treat pathogens, such as the Bcc. In this review, we discuss the clinical significance of the Bcc, the advantages of phage therapy, and the theoretical and clinical advancements made in phage therapy in general over the past decades, and apply these concepts specifically to the nascent, but growing and rapidly developing, field of Bcc phage therapy.


Asunto(s)
Complejo Burkholderia cepacia/efectos de los fármacos , Terapia de Fagos/métodos , Terapia de Fagos/tendencias , Bacteriófagos/genética , Bacteriófagos/metabolismo , Complejo Burkholderia cepacia/metabolismo , Complejo Burkholderia cepacia/patogenicidad , Humanos
10.
Viruses ; 13(6)2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-34204897

RESUMEN

The isolation and characterization of bacteriophages for the treatment of infections caused by the multidrug resistant pathogen Stenotrophomonas maltophilia is imperative as nosocomial and community-acquired infections are rapidly increasing in prevalence. This increase is largely due to the numerous virulence factors and antimicrobial resistance genes encoded by this bacterium. Research on S. maltophilia phages to date has focused on the isolation and in vitro characterization of novel phages, often including genomic characterization, from the environment or by induction from bacterial strains. This review summarizes the clinical significance, virulence factors, and antimicrobial resistance mechanisms of S. maltophilia, as well as all phages isolated and characterized to date and strategies for their use. We further address the limited in vivo phage therapy studies conducted against this bacterium and discuss the future research needed to spearhead phages as an alternative treatment option against multidrug resistant S. maltophilia.


Asunto(s)
Bacteriófagos/fisiología , Infecciones por Bacterias Gramnegativas/terapia , Terapia de Fagos , Stenotrophomonas maltophilia/patogenicidad , Bacteriófagos/genética , Genoma Viral , Humanos , Stenotrophomonas maltophilia/virología , Factores de Virulencia
11.
Microorganisms ; 9(1)2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33445453

RESUMEN

Pseudomonas aeruginosa is a pernicious bacterial pathogen that is difficult to treat because of high levels of antibiotic resistance. A promising alternative treatment option for such bacteria is the application of bacteriophages; the correct combination of phages plus antibiotics can produce synergistic inhibitory effects. In this study, we describe morphological changes induced by sub-MIC levels of the antibiotic aztreonam lysine (AzLys) on P. aeruginosa PA01, which may in part explain the observed phage-antibiotic synergy (PAS). One-step growth curves for phage E79 showed increased adsorption rates, decreased infection latency, accelerated time to lysis and a minor reduction in burst size. Phage E79 plus AzLys PAS was also able to significantly reduce P. aeruginosa biofilm growth over 3-fold as compared to phage treatment alone. Sub-inhibitory AzLys-induced filamentation of P. aeruginosa cells resulted in loss of twitching motility and a reduction in swimming motility, likely due to a reduction in the number of polar Type IV pili and flagella, respectively, on the filamented cell surfaces. Phage phiKZ, which uses Type IV pili as a receptor, did not exhibit increased activity with AzLys at lower sub-inhibitory levels, but still produced phage-antibiotic synergistic killing with sub-inhibitory AzLys. A one-step growth curve indicates that phiKZ in the presence of AzLys also exhibits a decreased infection latency and moderately undergoes accelerated time to lysis. In contrast to prior PAS studies demonstrating that phages undergo delayed time to lysis with cell filamentation, these PAS results show that phages undergo accelerated time to lysis, which therefore suggests that PAS is dependent upon multiple factors, including the type of phages and antibiotics used, and the bacterial host being tested.

12.
Int J Mol Sci ; 21(17)2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32882851

RESUMEN

The rapid increase in the number of worldwide human infections caused by the extremely antibiotic resistant bacterial pathogen Stenotrophomonas maltophilia is cause for concern. An alternative treatment solution in the post-antibiotic era is phage therapy, the use of bacteriophages to selectively kill bacterial pathogens. In this study, the novel bacteriophage AXL3 (vB_SmaS-AXL_3) was isolated from soil and characterized. Host range analysis using a panel of 29 clinical S. maltophilia isolates shows successful infection of five isolates and electron microscopy indicates that AXL3 is a member of the Siphoviridae family. Complete genome sequencing and analysis reveals a 47.5 kb genome predicted to encode 65 proteins. Functionality testing suggests AXL3 is a virulent phage and results show that AXL3 uses the type IV pilus, a virulence factor on the cell surface, as its receptor across its host range. This research identifies a novel virulent phage and characterization suggests that AXL3 is a promising phage therapy candidate, with future research examining modification through genetic engineering to broaden its host range.


Asunto(s)
Bacteriófagos/crecimiento & desarrollo , Bacteriófagos/aislamiento & purificación , Genoma Viral , Especificidad del Huésped , Receptores Virales/metabolismo , Stenotrophomonas maltophilia/virología , Virión/crecimiento & desarrollo , Bacteriófagos/genética , Bacteriófagos/ultraestructura , Humanos
13.
Front Microbiol ; 11: 1358, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32670234

RESUMEN

A novel Siphoviridae phage specific to the bacterial species Stenotrophomonas maltophilia was isolated from a pristine soil sample and characterized as a second member of the newly established Delepquintavirus genus. Phage DLP3 possesses one of the broadest host ranges of any S. maltophilia phage yet characterized, infecting 22 of 29 S. maltophilia strains. DLP3 has a genome size of 96,852 bp and a G+C content of 58.4%, which is significantly lower than S. maltophilia host strain D1571 (G+C content of 66.9%). The DLP3 genome encodes 153 coding domain sequences covering 95% of the genome, including five tRNA genes with different specificities. The DLP3 lysogen exhibits a growth rate increase during the exponential phase of growth as compared to the wild type strain. DLP3 also encodes a functional erythromycin resistance protein, causing lysogenic conversion of the host D1571 strain. Although a temperate phage, DLP3 demonstrates excellent therapeutic potential because it exhibits a broad host range, infects host cells through the S. maltophilia type IV pilus, and exhibits lytic activity in vivo. Undesirable traits, such as its temperate lifecycle, can be eliminated using genetic techniques to produce a modified phage useful in the treatment of S. maltophilia bacterial infections.

14.
BMC Genomics ; 20(1): 300, 2019 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-30991961

RESUMEN

BACKGROUND: Temperate bacteriophages are capable of lysogenic conversion of new bacterial hosts. This phenomenon is often ascribed to "moron" elements that are acquired horizontally and transcribed independently from the rest of the phage genes. Whereas some bacterial species exhibit relatively little prophage-dependent phenotypic changes, other bacterial species such as Stenotrophomonas maltophilia appear to commonly adopt prophage genetic contributions. RESULTS: The novel S. maltophilia bacteriophage DLP4 was isolated from soil using the highly antibiotic-resistant S. maltophilia strain D1585. Genome sequence analysis and functionality testing showed that DLP4 is a temperate phage capable of lysogenizing D1585. Two moron genes of interest, folA (BIT20_024) and ybiA (BIT20_065), were identified and investigated for their putative activities using complementation testing and phenotypic and transcriptomic changes between wild-type D1585 and the D1585::DLP4 lysogen. The gp24 / folA gene encodes dihydrofolate reductase (DHFR: FolA), an enzyme responsible for resistance to the antibiotic trimethoprim. I-TASSER analysis of DLP4 FolA predicted structural similarity to Bacillus anthracis DHFR and minimum inhibitory concentration experiments demonstrated that lysogenic conversion of D1585 by DLP4 provided the host cell with an increase in trimethoprim resistance. The gp65 / ybiA gene encodes N-glycosidase YbiA, which in E. coli BW25113 is required for its swarming motility phenotype. Expressing DLP4 ybiA in strain ybiA770(del)::kan restored its swarming motility activity to wildtype levels. Reverse transcription-PCR confirmed the expression of both of these genes during DLP4 lysogeny. CONCLUSIONS: S. maltophilia temperate phage DLP4 contributes to the antibiotic resistance exhibited by its lysogenized host strain. Genomic analyses can greatly assist in the identification of phage moron genes potentially involved in lysogenic conversion. Further research is required to fully understand the specific contributions temperate phage moron genes provide with respect to the antibiotic resistance and virulence of S. maltophilia host cells.


Asunto(s)
Bacteriófagos/genética , Bacteriófagos/fisiología , Stenotrophomonas maltophilia/virología , Bacteriófagos/metabolismo , Reparación del ADN , Replicación del ADN , Genoma Viral/genética , Morfogénesis/genética , Fenotipo , Microbiología del Suelo , Tetrahidrofolato Deshidrogenasa/genética
15.
Methods Mol Biol ; 1898: 163-171, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30570731

RESUMEN

Alternative infection models of bacterial pathogenesis are useful because they reproduce some of the disease characteristics observed in higher animals. Insect models are especially useful for modeling bacterial infections, as they are inexpensive, generally less labor-intensive, and more ethically acceptable than experimentation on higher organisms. Similar to animals, insects have been shown to possess innate immune systems that respond to pathogenic bacteria.


Asunto(s)
Alternativas a las Pruebas en Animales/métodos , Infecciones Bacterianas/microbiología , Larva/microbiología , Mariposas Nocturnas/microbiología , Animales , Bacterias/genética , Bacterias/patogenicidad , Infecciones Bacterianas/genética , Modelos Animales de Enfermedad , Humanos , Larva/genética , Mariposas Nocturnas/genética , Virulencia/genética
16.
Methods Mol Biol ; 1898: 191-198, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30570734

RESUMEN

Alternative animal host models of bacterial infection have been developed which reproduce some of the disease conditions observed in higher animals. Analogously, plants are useful for modeling bacterial pathogenesis, in some cases revealing broadly conserved infection mechanisms. Similar to animals, plants have been shown to possess innate immune systems that respond to invading viruses, bacteria, and fungi. Plant infection models often yield results faster, are more convenient, and less expensive than many animal infection models. Here, we describe the use of two different plant-based infection models for the discovery of virulence genes and factors involved in bacterial pathogenesis.


Asunto(s)
Araceae/microbiología , Bacterias/patogenicidad , Infecciones Bacterianas/microbiología , Medicago sativa/microbiología , Animales , Araceae/virología , Bacterias/virología , Infecciones Bacterianas/inmunología , Infecciones Bacterianas/virología , Humanos , Medicago sativa/virología , Virulencia/genética
17.
Viruses ; 10(6)2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29925793

RESUMEN

Bacteriophages DLP1 and DLP2 are capable of infecting both Stenotrophomonas maltophilia and Pseudomonas aeruginosa strains, two highly antibiotic resistant bacterial pathogens, which is unusual for phages that typically exhibit extremely limited host range. To explain their unusual cross-order infectivity and differences in host range, we have identified the type IV pilus as the primary receptor for attachment. Screening of a P. aeruginosa PA01 mutant library, a host that is susceptible to DLP1 but not DLP2, identified DLP1-resistant mutants with disruptions in pilus structural and regulatory components. Subsequent complementation of the disrupted pilin subunit genes in PA01 restored DLP1 infection. Clean deletion of the major pilin subunit, pilA, in S. maltophilia strains D1585 and 280 prevented phage binding and lysis by both DLP1 and DLP2, and complementation restored infection by both. Transmission electron microscopy shows a clear interaction between DLP1 and pili of both D1585 and PA01. These results support the identity of the type IV pilus as the receptor for DLP1 and DLP2 infection across their broad host ranges. This research further characterizes DLP1 and DLP2 as potential “anti-virulence” phage therapy candidates for the treatment of multidrug resistant bacteria from multiple genera.


Asunto(s)
Bacteriófagos/metabolismo , Fimbrias Bacterianas/genética , Fimbrias Bacterianas/metabolismo , Receptores Virales/genética , Stenotrophomonas maltophilia/química , Stenotrophomonas maltophilia/virología , Proteínas Bacterianas/genética , Bacteriófagos/ultraestructura , Farmacorresistencia Bacteriana Múltiple , Proteínas Fimbrias/deficiencia , Proteínas Fimbrias/genética , Fimbrias Bacterianas/química , Fimbrias Bacterianas/ultraestructura , Prueba de Complementación Genética , Especificidad del Huésped , Humanos , Microscopía Electrónica de Transmisión , Mutación , Terapia de Fagos , Fagos Pseudomonas/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/virología , Receptores Virales/metabolismo , Stenotrophomonas maltophilia/genética , Virulencia , Acoplamiento Viral
18.
Genome Announc ; 6(9)2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29496826

RESUMEN

Stenotrophomonas maltophilia bacteriophage DLP5 is a temperate phage with Siphoviridae family morphotype. DLP5 (vB_SmaS_DLP_5) is the first S. maltophilia phage shown to exist as a phagemid. The DLP5 genome is 96,542 bp, encoding 149 open reading frames (ORFs), including four tRNAs. Genomic characterization reveals moron genes potentially involved in host cell membrane modification.

19.
J Microbiol Methods ; 146: 16-21, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29360487

RESUMEN

The Burkholderia cepacia complex (Bcc) consists of at least 20 phenotypically similar but genotypically distinct Gram-negative bacteria that are ubiquitous in nature, are capable of promoting plant growth and biodegradation of pollutants, but that also are highly antibiotic resistant and produce damaging effects towards plants, fungi, and humans. To study these genetically recalcitrant bacteria in detail, molecular tools are required that work efficiently with the many strains and species of the Bcc. One mutagenesis strategy that has been used effectively to analyze the genes of Burkholderia cenocepacia is based upon the activity of the Sce-I restriction enzyme. Unfortunately, this system is limited in its applicability to many members of the Bcc. Therefore, we undertook the expansion of this system to create an Sce-I mutagenesis system that could be used with many different species and strains of the Bcc, including members of the B. cenocepacia IIIB Midwest clones. We demonstrated the use of this system by clean-deleting the lipo-oligosaccharide (LOS) inner core biosynthesis gene waaC, to create a B. cenocepacia PC184 strain variant with truncated LOS. This enhanced mutagenesis system can be used to analyze a wide range of Burkholderia and other Gram-negative bacteria.


Asunto(s)
Técnicas de Tipificación Bacteriana/métodos , Complejo Burkholderia cepacia/genética , Mutagénesis , ADN Bacteriano , Genes Bacterianos/genética , Genotipo , Lipopolisacáridos/genética , Plásmidos/genética , Transformación Bacteriana
20.
PLoS One ; 12(3): e0173341, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28291834

RESUMEN

Increasing isolation of the extremely antibiotic resistant bacterium Stenotrophomonas maltophilia has caused alarm worldwide due to the limited treatment options available. A potential treatment option for fighting this bacterium is 'phage therapy', the clinical application of bacteriophages to selectively kill bacteria. Bacteriophage DLP6 (vB_SmoM-DLP6) was isolated from a soil sample using clinical isolate S. maltophilia strain D1571 as host. Host range analysis of phage DLP6 against 27 clinical S. maltophilia isolates shows successful infection and lysis in 13 of the 27 isolates tested. Transmission electron microscopy of DLP6 indicates that it is a member of the Myoviridae family. Complete genome sequencing and analysis of DLP6 reveals its richly recombined evolutionary history, featuring a core of both T4-like and cyanophage genes, which suggests that it is a member of the T4-superfamily. Unlike other T4-superfamily phages however, DLP6 features a transposase and ends with 229 bp direct terminal repeats. The isolation of this bacteriophage is an exciting discovery due to the divergent nature of DLP6 in relation to the T4-superfamily of phages.


Asunto(s)
Bacteriófago T4/aislamiento & purificación , Stenotrophomonas maltophilia/virología , Bacteriófago T4/genética , Bacteriófago T4/ultraestructura , Microscopía Electrónica de Transmisión , Filogenia , Regiones Promotoras Genéticas , Regiones Terminadoras Genéticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...