Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cereb Cortex ; 26(1): 414-26, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26472558

RESUMEN

Muscarinic M1 acetylcholine receptors (M1Rs) are highly expressed in the hippocampus, and their inhibition or ablation disrupts the encoding of spatial memory. It has been hypothesized that the principal mechanism by which M1Rs influence spatial memory is by the regulation of hippocampal synaptic plasticity. Here, we use a combination of recently developed, well characterized, selective M1R agonists and M1R knock-out mice to define the roles of M1Rs in the regulation of hippocampal neuronal and synaptic function. We confirm that M1R activation increases input resistance and depolarizes hippocampal CA1 pyramidal neurons and show that this profoundly increases excitatory postsynaptic potential-spike coupling. Consistent with a critical role for M1Rs in synaptic plasticity, we now show that M1R activation produces a robust potentiation of glutamatergic synaptic transmission onto CA1 pyramidal neurons that has all the hallmarks of long-term potentiation (LTP): The potentiation requires NMDA receptor activity and bi-directionally occludes with synaptically induced LTP. Thus, we describe synergistic mechanisms by which acetylcholine acting through M1Rs excites CA1 pyramidal neurons and induces LTP, to profoundly increase activation of CA1 pyramidal neurons. These features are predicted to make a major contribution to the pro-cognitive effects of cholinergic transmission in rodents and humans.


Asunto(s)
Colinérgicos/farmacología , Hipocampo/metabolismo , Potenciación a Largo Plazo/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Receptor Muscarínico M1/metabolismo , Sinapsis/efectos de los fármacos , Animales , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Potenciación a Largo Plazo/fisiología , Ratones Noqueados , Plasticidad Neuronal/fisiología , Células Piramidales/citología , Células Piramidales/efectos de los fármacos , Sinapsis/fisiología , Transmisión Sináptica/fisiología
2.
J Neurosci ; 31(33): 11941-52, 2011 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-21849555

RESUMEN

Hippocampal CA1 pyramidal neurons are highly sensitive to ischemic damage, whereas neighboring CA3 pyramidal neurons are less susceptible. It is proposed that switching of AMPA receptor (AMPAR) subunits on CA1 neurons during an in vitro model of ischemia, oxygen/glucose deprivation (OGD), leads to an enhanced permeability of AMPARs to Ca(2+), resulting in delayed cell death. However, it is unclear whether the same mechanisms exist in CA3 neurons and whether this underlies the differential sensitivity to ischemia. Here, we investigated the consequences of OGD for AMPAR function in CA3 neurons using electrophysiological recordings in rat hippocampal slices. Following a 15 min OGD protocol, a substantial depression of AMPAR-mediated synaptic transmission was observed at CA3 associational/commissural and mossy fiber synapses but not CA1 Schaffer collateral synapses. The depression of synaptic transmission following OGD was prevented by metabotropic glutamate receptor 1 (mGluR1) or A(3) receptor antagonists, indicating a role for both glutamate and adenosine release. Inhibition of PLC, PKC, or chelation of intracellular Ca(2+) also prevented the depression of synaptic transmission. Inclusion of peptides to interrupt the interaction between GluA2 and PICK1 or dynamin and amphiphysin prevented the depression of transmission, suggesting a dynamin and PICK1-dependent internalization of AMPARs after OGD. We also show that a reduction in surface and total AMPAR protein levels after OGD was prevented by mGluR1 or A(3) receptor antagonists, indicating that AMPARs are degraded following internalization. Thus, we describe a novel mechanism for the removal of AMPARs in CA3 pyramidal neurons following OGD that has the potential to reduce excitotoxicity and promote neuroprotection.


Asunto(s)
Región CA3 Hipocampal/metabolismo , Glucosa/deficiencia , Inhibición Neural/fisiología , Oxígeno/metabolismo , Receptor de Adenosina A3/fisiología , Receptores AMPA/antagonistas & inhibidores , Receptores de Glutamato Metabotrópico/fisiología , Sinapsis/metabolismo , Animales , Animales Recién Nacidos , Región CA3 Hipocampal/citología , Potenciales Postsinápticos Excitadores/fisiología , Masculino , Neuronas/metabolismo , Técnicas de Cultivo de Órganos , Ratas , Ratas Wistar , Receptor de Adenosina A3/metabolismo , Receptores AMPA/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...