Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
ACS Infect Dis ; 10(8): 2913-2928, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39023360

RESUMEN

The lack of effective vaccines and the development of resistance to the current treatments highlight the urgent need for new anti-leishmanials. Sphingolipid metabolism has been proposed as a promising source of Leishmania-specific targets as these lipids are key structural components of the eukaryotic plasma membrane and are involved in distinct cellular events. Inositol phosphorylceramide (IPC) is the primary sphingolipid in the Leishmania species and is the product of a reaction mediated by IPC synthase (IPCS). The antihistamine clemastine fumarate has been identified as an inhibitor of IPCS in L. major and a potent anti-leishmanial in vivo. Here we sought to further examine the target of this compound in the more tractable species L. mexicana, using an approach combining genomic, proteomic, metabolomic and lipidomic technologies, with molecular and biochemical studies. While the data demonstrated that the response to clemastine fumarate was largely conserved, unexpected disturbances beyond sphingolipid metabolism were identified. Furthermore, while deletion of the gene encoding LmxIPCS had little impact in vitro, it did influence clemastine fumarate efficacy and, importantly, in vivo pathogenicity. Together, these data demonstrate that clemastine does inhibit LmxIPCS and cause associated metabolic disturbances, but its primary target may lie elsewhere.


Asunto(s)
Antiprotozoarios , Antiprotozoarios/farmacología , Antiprotozoarios/química , Esfingolípidos/metabolismo , Hexosiltransferasas/genética , Hexosiltransferasas/metabolismo , Hexosiltransferasas/antagonistas & inhibidores , Leishmania/efectos de los fármacos , Leishmania/genética , Leishmania/enzimología , Animales , Leishmania mexicana/efectos de los fármacos , Leishmania mexicana/genética , Leishmania mexicana/enzimología , Glicoesfingolípidos/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo
2.
AMB Express ; 14(1): 68, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844693

RESUMEN

Toxoplasma gondii is an obligate intracellular parasite associated with severe disease, especially in the immunosuppressed. It is also a cause of congenital malformation and abortion in both animals and humans and is considered one of the most important foodborne pathogens worldwide with different strains showing variable distribution and differing pathogenicity. Thus, strain-level differentiation of T. gondii isolates is an essential asset in the understanding of parasite's diversity, geographical distribution, epidemiology and health risk. Here, we designed and implemented an Oxford Nanopore MinION protocol to analyse genomic sequence variation including single nucleotide polymorphisms (SNPs) and insertion/deletion polymorphisms (InDel's) of four different genomic loci, part of protein coding genes SAG2, SAG3, ROP17 and ROP21. This method provided results with the sequencing depth necessary for accurate differentiation of T. gondii strains and represents a rapid approach compared to conventional techniques which we further validated against environmental samples isolated from wild wood mice. In summary, multi-locus sequence typing (MLST) of both highly conserved and more polymorphic areas of the genome, provided robust data for strain classification in a platform ready for further adaption for other strains and pathogens.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA