Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Pharmacol ; 106(2): 92-106, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38821630

RESUMEN

Bipolar disorder impacts millions of patients in the United States but the mechanistic understanding of its pathophysiology and therapeutics is incomplete. Atypical antipsychotic serotonin2A (5-HT2A) receptor antagonists, such as quetiapine and olanzapine, and mood-stabilizing voltage-gated sodium channel (VGSC) blockers, such as lamotrigine, carbamazepine, and valproate, show therapeutic synergy and are often prescribed in combination for the treatment of bipolar disorder. Combination therapy is a complex task for clinicians and patients, often resulting in unexpected difficulties with dosing, drug tolerances, and decreased patient compliance. Thus, an unmet need for bipolar disorder treatment is to develop a therapeutic agent that targets both 5-HT2A receptors and VGSCs. Toward this goal, we developed a novel small molecule that simultaneously antagonizes 5-HT2A receptors and blocks sodium current. The new compound, N-(4-bromo-2,5-dimethoxyphenethyl)-6-(4-phenylbutoxy)hexan-1-amine (XOB) antagonizes 5-HT-stimulated, Gq-mediated, calcium flux at 5-HT2A receptors at low micromolar concentrations while displaying negligible affinity and activity at 5-HT1A, 5-HT2B, and 5-HT2C receptors. At similar concentrations, XOB administration inhibits sodium current in heterologous cells and results in reduced action potential (AP) firing and VGSC-related AP properties in mouse prefrontal cortex layer V pyramidal neurons. Thus, XOB represents a new, proof-of-principle tool that can be used for future preclinical investigations and therapeutic development. This polypharmacology approach of developing a single molecule to act upon two targets, which are currently independently targeted by combination therapies, may lead to safer alternatives for the treatment of psychiatric disorders that are increasingly being found to benefit from the simultaneous targeting of multiple receptors. SIGNIFICANCE STATEMENT: The authors synthesized a novel small molecule (XOB) that simultaneously antagonizes two key therapeutic targets of bipolar disorder, 5-HT2A receptors and voltage-gated sodium channels, in heterologous cells, and inhibits the intrinsic excitability of mouse prefrontal cortex layer V pyramidal neurons in brain slices. XOB represents a valuable new proof-of-principle tool for future preclinical investigations and provides a novel molecular approach to the pharmacological treatment of complex neuropsychiatric disease, which often requires a combination of therapeutics for sufficient patient benefit.


Asunto(s)
Receptor de Serotonina 5-HT2A , Animales , Ratones , Receptor de Serotonina 5-HT2A/metabolismo , Receptor de Serotonina 5-HT2A/efectos de los fármacos , Humanos , Antagonistas del Receptor de Serotonina 5-HT2/farmacología , Canales de Sodio Activados por Voltaje/metabolismo , Canales de Sodio Activados por Voltaje/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Células HEK293 , Cricetulus
2.
Brain ; 147(4): 1231-1246, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37812817

RESUMEN

Dravet syndrome is an intractable developmental and epileptic encephalopathy caused by de novo variants in SCN1A resulting in haploinsufficiency of the voltage-gated sodium channel Nav1.1. We showed previously that administration of the antisense oligonucleotide STK-001, also called ASO-22, generated using targeted augmentation of nuclear gene output technology to prevent inclusion of the nonsense-mediated decay, or poison, exon 20N in human SCN1A, increased productive Scn1a transcript and Nav1.1 expression and reduced the incidence of electrographic seizures and sudden unexpected death in epilepsy in a mouse model of Dravet syndrome. Here, we investigated the mechanism of action of ASO-84, a surrogate for ASO-22 that also targets splicing of SCN1A exon 20N, in Scn1a+/- Dravet syndrome mouse brain. Scn1a +/- Dravet syndrome and wild-type mice received a single intracerebroventricular injection of antisense oligonucleotide or vehicle at postnatal Day 2. We examined the electrophysiological properties of cortical pyramidal neurons and parvalbumin-positive fast-spiking interneurons in brain slices at postnatal Days 21-25 and measured sodium currents in parvalbumin-positive interneurons acutely dissociated from postnatal Day 21-25 brain slices. We show that, in untreated Dravet syndrome mice, intrinsic cortical pyramidal neuron excitability was unchanged while cortical parvalbumin-positive interneurons showed biphasic excitability with initial hyperexcitability followed by hypoexcitability and depolarization block. Dravet syndrome parvalbumin-positive interneuron sodium current density was decreased compared to wild-type. GABAergic signalling to cortical pyramidal neurons was reduced in Dravet syndrome mice, suggesting decreased GABA release from interneurons. ASO-84 treatment restored action potential firing, sodium current density and GABAergic signalling in Dravet syndrome parvalbumin-positive interneurons. Our work suggests that interneuron excitability is selectively affected by ASO-84. This new work provides critical insights into the mechanism of action of this antisense oligonucleotide and supports the potential of antisense oligonucleotide-mediated upregulation of Nav1.1 as a successful strategy to treat Dravet syndrome.


Asunto(s)
Epilepsias Mioclónicas , Oligonucleótidos Antisentido , Ratones , Animales , Humanos , Oligonucleótidos Antisentido/farmacología , Parvalbúminas/metabolismo , Epilepsias Mioclónicas/genética , Canal de Sodio Activado por Voltaje NAV1.1/genética , Interneuronas/metabolismo , Ácido gamma-Aminobutírico , Modelos Animales de Enfermedad
3.
Sci Rep ; 13(1): 8887, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37264112

RESUMEN

Voltage gated sodium channels (VGSCs) are required for action potential initiation and propagation in mammalian neurons. As with other ion channel families, VGSC density varies between neurons. Importantly, sodium current (INa) density variability is reduced in pyramidal neurons of Scn1b null mice. Scn1b encodes the VGSC ß1/ ß1B subunits, which regulate channel expression, trafficking, and voltage dependent properties. Here, we investigate how variable INa density in cortical layer 6 and subicular pyramidal neurons affects spike patterning and network synchronization. Constitutive or inducible Scn1b deletion enhances spike timing correlations between pyramidal neurons in response to fluctuating stimuli and impairs spike-triggered average current pattern diversity while preserving spike reliability. Inhibiting INa with a low concentration of tetrodotoxin similarly alters patterning without impairing reliability, with modest effects on firing rate. Computational modeling shows that broad INa density ranges confer a similarly broad spectrum of spike patterning in response to fluctuating synaptic conductances. Network coupling of neurons with high INa density variability displaces the coupling requirements for synchronization and broadens the dynamic range of activity when varying synaptic strength and network topology. Our results show that INa heterogeneity between neurons potently regulates spike pattern diversity and network synchronization, expanding VGSC roles in the nervous system.


Asunto(s)
Neuronas , Sodio , Ratones , Animales , Sodio/metabolismo , Reproducibilidad de los Resultados , Tetrodotoxina/farmacología , Neuronas/metabolismo , Potenciales de Acción , Ratones Noqueados , Mamíferos/metabolismo , Subunidad beta-1 de Canal de Sodio Activado por Voltaje/genética , Subunidad beta-1 de Canal de Sodio Activado por Voltaje/metabolismo
4.
Ann Clin Transl Neurol ; 7(11): 2137-2149, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32979291

RESUMEN

OBJECTIVE: Human variants in voltage-gated sodium channel (VGSC) α and ß subunit genes are linked to developmental and epileptic encephalopathies (DEEs). Inherited, biallelic, loss-of-function variants in SCN1B, encoding the ß1/ß1B subunits, are linked to early infantile DEE (EIEE52). De novo, monoallelic variants in SCN1A (Nav1.1), SCN2A (Nav1.2), SCN3A (Nav1.3), and SCN8A (Nav1.6) are also linked to DEEs. While these VGSC-linked DEEs have similar presentations, they have diverse mechanisms of altered neuronal excitability. Mouse models have suggested that Scn2a-, Scn3a-, and Scn8a-linked DEE variants are, in general, gain of function, resulting in increased persistent or resurgent sodium current (INa ) and pyramidal neuron hyperexcitability. In contrast, Scn1a-linked DEE variants, in general, are loss-of-function, resulting in decreased INa and hypoexcitability of fast-spiking interneurons. VGSC ß1 subunits associate with Nav1.1, Nav1.2, Nav1.3, and Nav1.6 and are expressed throughout the brain, raising the possibility that insults to both pyramidal and interneuron excitability may drive EIEE52 pathophysiology. METHODS: We investigated excitability defects in pyramidal and parvalbumin-positive (PV +) interneurons in the Scn1b-/- model of EIEE52. We also used Scn1bFL/FL mice to delete Scn1b in specific neuronal populations. RESULTS: Scn1b-/- cortical PV + interneurons were hypoexcitable, with reduced INa density. Scn1b-/- cortical pyramidal neurons had population-specific changes in excitability and impaired INa density. Scn1b deletion in PV + neurons resulted in 100% lethality, whereas deletion in Emx1 + or Camk2a + neurons did not affect survival. INTERPRETATION: This work suggests that SCN1B-linked DEE variants impact both excitatory and inhibitory neurons, leading to the increased severity of EIEE52 relative to other DEEs.


Asunto(s)
Corteza Cerebral/fisiopatología , Interneuronas/fisiología , Células Piramidales/fisiología , Espasmos Infantiles/genética , Espasmos Infantiles/fisiopatología , Subunidad beta-1 de Canal de Sodio Activado por Voltaje/fisiología , Animales , Recuento de Células , Modelos Animales de Enfermedad , Humanos , Recién Nacido , Interneuronas/citología , Ratones , Ratones Congénicos , Ratones Endogámicos C57BL , Parvalbúminas/metabolismo , Células Piramidales/citología , Subunidad beta-1 de Canal de Sodio Activado por Voltaje/genética
5.
Neurosci Lett ; 724: 134853, 2020 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-32114117

RESUMEN

Voltage-gated sodium channels (VGSCs) are responsible for the initiation and propagation of action potentials in neurons. The human genome includes ten human VGSC α-subunit genes, SCN(X)A, encoding Nav1.1-1.9 plus Nax. To understand the unique role that each VGSC plays in normal and pathophysiological function in neural networks, compounds with high affinity and selectivity for specific VGSC subtypes are required. Toward that goal, a structural analog of the VGSC pore blocker tetrodotoxin, 4,9-anhydrotetrodotoxin (4,9-ah-TTX), has been reported to be more selective in blocking Na+ current mediated by Nav1.6 than other TTX-sensitive VGSCs, including Nav1.2, Nav1.3, Nav1.4, and Nav1.7. While SCN1A, encoding Nav1.1, has been implicated in several neurological diseases, the effects of 4,9-ah-TTX on Nav1.1-mediated Na+ current have not been tested. Here, we compared the binding of 4,9-ah-TTX for human and mouse brain preparations, and the effects of 4,9-ah-TTX on human Nav1.1-, Nav1.3- and Nav1.6-mediated Na+ currents using the whole-cell patch clamp technique in heterologous cells. We show that, while 4,9-ah-TTX administration results in significant blockade of Nav1.6-mediated Na+ current in the nanomolar range, it also has significant effects on Nav1.1-mediated Na+ current. Thus, 4,9-ah-TTX is not a useful tool in identifying Nav1.6-specific effects in human brain networks.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.1/fisiología , Canal de Sodio Activado por Voltaje NAV1.6/fisiología , Tetrodotoxina/análogos & derivados , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología , Animales , Relación Dosis-Respuesta a Droga , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Transgénicos , Especificidad de la Especie , Tetrodotoxina/farmacología
6.
Pharmacol Rev ; 71(4): 450-466, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31471460

RESUMEN

Despite continuous clinical use for more than 170 years, the mechanism of general anesthetics has not been completely characterized. In this review, we focus on the role of voltage-gated sodium channels in the sedative-hypnotic actions of halogenated ethers, describing the history of anesthetic mechanisms research, the basic neurobiology and pharmacology of voltage-gated sodium channels, and the evidence for a mechanistic interaction between halogenated ethers and sodium channels in the induction of unconsciousness. We conclude with a more integrative perspective of how voltage-gated sodium channels might provide a critical link between molecular actions of the halogenated ethers and the more distributed network-level effects associated with the anesthetized state across species.


Asunto(s)
Éteres/farmacología , Inconsciencia/inducido químicamente , Inconsciencia/metabolismo , Canales de Sodio Activados por Voltaje/metabolismo , Animales , Éteres/química , Humanos , Hidrocarburos Halogenados/química , Hidrocarburos Halogenados/farmacología , Hipnóticos y Sedantes/química , Hipnóticos y Sedantes/farmacología
7.
ACS Chem Biol ; 14(5): 941-948, 2019 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-30983320

RESUMEN

Small molecules that bind to voltage-gated sodium channels (VGSCs) are promising leads in the treatment of numerous neurodegenerative diseases and pain. Nature is a highly skilled medicinal chemist in this regard, designing potent VGSC ligands capable of binding to and blocking the channel, thereby offering compounds of potential therapeutic interest. Paralytic shellfish toxins (PSTs), produced by cyanobacteria and marine dinoflagellates, are examples of these naturally occurring small molecule VGSC blockers that can potentially be leveraged to solve human health concerns. Unfortunately, the remarkable potency of these natural products results in equally exceptional toxicity, presenting a significant challenge for the therapeutic application of these compounds. Identifying less potent analogs and convenient methods for accessing them therefore provides an attractive approach to developing molecules with enhanced therapeutic potential. Fortunately, Nature has evolved tools to modulate the toxicity of PSTs through selective hydroxylation, sulfation, and desulfation of the core scaffold. Here, we demonstrate the function of enzymes encoded in cyanobacterial PST biosynthetic gene clusters that have evolved specifically for the sulfation of highly functionalized PSTs, the substrate scope of these enzymes, and elucidate the biosynthetic route from saxitoxin to monosulfated gonyautoxins and disulfated C-toxins. Finally, the binding affinities of the nonsulfated, monosulfated, and disulfated products of these enzymatic reactions have been evaluated for VGSC binding affinity using mouse whole brain membrane preparations to provide an assessment of relative toxicity. These data demonstrate the unique detoxification effect of sulfotransferases in PST biosynthesis, providing a potential mechanism for the development of more attractive PST-derived therapeutic analogs.


Asunto(s)
Toxinas Marinas/metabolismo , Mariscos , Animales , Biocatálisis , Encéfalo/metabolismo , Ratones , Sulfotransferasas/metabolismo , Canales de Sodio Activados por Voltaje/metabolismo
8.
J Psychoactive Drugs ; 50(4): 298-305, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30111247

RESUMEN

University of Michigan Pharmacology Professor Ed Domino is an expert in the field of neuropsychopharmacology. For over six decades, Dr. Domino has made many contributions to our understanding of psychoactive drugs, but is most well-known for his role in the development of ketamine anesthesia. This article covers the story behind this discovery, along with many other fascinating personal and professional anecdotes, all of which provide insight into the career of a remarkable scientist.


Asunto(s)
Anestésicos Disociativos/historia , Ketamina/historia , Psicotrópicos/historia , Anestésicos Disociativos/farmacología , Historia del Siglo XX , Humanos , Ketamina/farmacología , Neurofarmacología/historia , Psicofarmacología/historia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA