Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 14: 1238163, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37692419

RESUMEN

The reuse of treated wastewater for crop irrigation is vital in water-scarce semi-arid regions. However, concerns arise regarding emerging contaminants (ECs) that persist in treated wastewater and may accumulate in irrigated crops, potentially entering the food chain and the environment. This pilot-scale study conducted in southern Italy focused on tomato plants (Solanum lycopersicum L. cv Taylor F1) irrigated with treated wastewater to investigate EC uptake, accumulation, and translocation processes. The experiment spanned from June to September 2021 and involved three irrigation strategies: conventional water (FW), treated wastewater spiked with 10 target contaminants at the European average dose (TWWx1), and tertiary WWTP effluent spiked with the target contaminants at a triple dose (TWWx3). The results showed distinct behavior and distribution of ECs between the TWWx1 and TWWx3 strategies. In the TWWx3 strategy, clarithromycin, carbamazepine, metoprolol, fluconazole, and climbazole exhibited interactions with the soil-plant system, with varying degradation rates, soil accumulation rates, and plant accumulation rates. In contrast, naproxen, ketoprofen, diclofenac, sulfamethoxazole, and trimethoprim showed degradation. These findings imply that some ECs may be actively taken up by plants, potentially introducing them into the food chain and raising concerns for humans and the environment.

2.
PLoS One ; 17(4): e0267219, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35476844

RESUMEN

The current social context requires an increase in food production, improvement of its quality characteristics and greater environmental sustainability in the management of agricultural systems. Technological innovation plays a great role in making agriculture more efficient and sustainable. One of the main aims of precision farming (PF) is optimizing yield and its quality, while minimizing environmental impacts and improving the efficient use of resources. Variable rate techniques (VRT) are amongst the main management options for PF, and they require spatial information. This work incorporates maps of soil properties from low induction electromagnetic measurements into nitrogen (N) balance calculations for a field application of VRT nitrogen fertilization of (Triticum durum Desf., var. Tirex). The trial was conducted in 2018-19 at Genzano di Lucania (PZ, Italy) geologically located on the clayey hillsides of the Bradanica pit and the Sant'Arcangelo basin. Three soil homogeneous areas were detected through low induction electromagnetic measurements and used as uniform management zones. The amount of nitrogen fertilizer to be applied by VRT was calculated on the base of estimated crop nitrogen uptake and soil characteristics of each homogeneous area. Crop response to VRT was compared to uniform nitrogen application (UA) on the whole field. The application of VRT resulted in a reduction of 25% nitrogen fertilizer with the same level of yield respect to UA. Grain protein content, as well as gluten content and N content, were significantly higher in VRT than in UA. As a consequence of lower nitrogen input and higher levels of N removal, VRT reached a higher nitrogen use efficiency than UA, and this indicates a lower environmental impact and a higher economic profitability.


Asunto(s)
Nitrógeno , Triticum , Fertilización , Fertilizantes/análisis , Nitrógeno/metabolismo , Suelo , Triticum/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...