Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Sci Adv ; 10(32): eadl1584, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39110797

RESUMEN

Histone acetyltransferases KAT2A and KAT2B are paralogs highly expressed in the intestinal epithelium, but their functions are not well understood. In this study, double knockout of murine Kat2 genes in the intestinal epithelium was lethal, resulting in robust activation of interferon signaling and interferon-associated phenotypes including the loss of intestinal stem cells. Use of pharmacological agents and sterile organoid cultures indicated a cell-intrinsic double-stranded RNA trigger for interferon signaling. Acetyl-proteomics and sequencing of immunoprecipitated double-stranded RNA were used to interrogate the mechanism behind this response, which identified mitochondria-encoded double-stranded RNA as the source of intrinsic interferon signaling. Kat2a and Kat2b therefore play an essential role in regulating mitochondrial functions and maintaining intestinal health.


Asunto(s)
Histona Acetiltransferasas , Interferones , Ratones Noqueados , ARN Bicatenario , Transducción de Señal , Células Madre , Animales , ARN Bicatenario/metabolismo , Ratones , Células Madre/metabolismo , Células Madre/citología , Interferones/metabolismo , Histona Acetiltransferasas/metabolismo , Histona Acetiltransferasas/genética , Mucosa Intestinal/metabolismo , Mucosa Intestinal/citología , Mitocondrias/metabolismo , Autorrenovación de las Células/genética , Intestinos/citología
2.
Genes Dev ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39168636

RESUMEN

Despite recent advances in therapeutic treatments, multiple myeloma (MM) remains an incurable malignancy. Epigenetic factors contribute to the initiation, progression, relapse, and clonal heterogeneity in MM, but our knowledge on epigenetic mechanisms underlying MM development is far from complete. The SAGA complex serves as a coactivator in transcription and catalyzes acetylation and deubiquitylation. Analyses of data sets in the Cancer Dependency Map Project revealed that many SAGA components are selective dependencies in MM. To define SAGA-specific functions, we focused on ADA2B, the only subunit in the lysine acetyltransferase (KAT) module that specifically functions in SAGA. Integration of RNA sequencing (RNA-seq), assay for transposase-accessible chromatin with sequencing (ATAC-seq), and cleavage under targets and release using nuclease assay (CUT&RUN) results identified pathways directly regulated by ADA2B including MTORC1 signaling and oncogenic programs driven by MYC, E2F, and MM-specific MAF. We discovered that ADA2B is recruited to MAF and MYC gene targets, and that MAF shares a majority of its targets with MYC in MM cells. Furthermore, we found that the SANT domain of ADA2B is required for interaction with both GCN5 and PCAF acetyltransferases, incorporation into SAGA, and ADA2B protein stability. Our findings uncover previously unknown SAGA KAT module-dependent mechanisms controlling MM cell growth, revealing a vulnerability that might be exploited for future development of MM therapy.

3.
Sci Adv ; 10(22): eadm9449, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38820154

RESUMEN

Pediatric cancers are frequently driven by genomic alterations that result in aberrant transcription factor activity. Here, we used functional genomic screens to identify multiple genes within the transcriptional coactivator Spt-Ada-Gcn5-acetyltransferase (SAGA) complex as selective dependencies for MYCN-amplified neuroblastoma, a disease of dysregulated development driven by an aberrant oncogenic transcriptional program. We characterized the DNA recruitment sites of the SAGA complex in neuroblastoma and the consequences of loss of SAGA complex lysine acetyltransferase (KAT) activity on histone acetylation and gene expression. We demonstrate that loss of SAGA complex KAT activity is associated with reduced MYCN binding on chromatin, suppression of MYC/MYCN gene expression programs, and impaired cell cycle progression. Further, we showed that the SAGA complex is pharmacologically targetable in vitro and in vivo with a KAT2A/KAT2B proteolysis targeting chimeric. Our findings expand our understanding of the histone-modifying complexes that maintain the oncogenic transcriptional state in this disease and suggest therapeutic potential for inhibitors of SAGA KAT activity in MYCN-amplified neuroblastoma.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Proteína Proto-Oncogénica N-Myc , Neuroblastoma , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuroblastoma/patología , Humanos , Proteína Proto-Oncogénica N-Myc/genética , Proteína Proto-Oncogénica N-Myc/metabolismo , Línea Celular Tumoral , Histona Acetiltransferasas/metabolismo , Histona Acetiltransferasas/genética , Acetilación , Histonas/metabolismo , Animales , Amplificación de Genes , Cromatina/metabolismo , Cromatina/genética , Ratones
4.
bioRxiv ; 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38585845

RESUMEN

Despite recent advances in therapeutic treatments, multiple myeloma (MM) remains an incurable malignancy. Epigenetic factors contribute to the initiation, progression, relapse, and clonal heterogeneity in MM, but our knowledge on epigenetic mechanisms underlying MM development is far from complete. The SAGA complex serves as a coactivator in transcription and catalyzes acetylation and deubiquitylation. Analyses of datasets in the Cancer Dependency Map Project revealed many SAGA components are selective dependencies in MM. To define SAGA-specific functions, we focused on ADA2B, the only subunit in the lysine acetyltransferase (KAT) module that specifically functions in SAGA. Integration of RNA-seq, ATAC-seq, and CUT&RUN results identified pathways directly regulated by ADA2B include MTORC1 signaling, MYC, E2F, and MM-specific MAF oncogenic programs. We discovered that ADA2B is recruited to MAF and MYC gene targets, and that MAF shares a majority of its targets with MYC in MM cells. Furthermore, we found the SANT domain of ADA2B is required for interaction with both GCN5 and PCAF acetyltransferases, incorporation into SAGA, and ADA2B protein stability. Our findings uncover previously unknown SAGA KAT module-dependent mechanisms controlling MM cell growth, revealing a vulnerability that might be exploited for future development of MM therapy.

5.
PLoS One ; 19(1): e0290837, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38236941

RESUMEN

The Ubiquitin Specific Peptidase 22 (USP22), a component of the Spt-Ada-Gcn5 Acetyltransferase (SAGA) histone modifying complex, is overexpressed in multiple human cancers, but how USP22 impacts tumorigenesis is not clear. We reported previously that Usp22 loss in mice impacts execution of several signaling pathways driven by growth factor receptors such as erythroblastic oncogene B b2 (ERBB2). To determine whether changes in USP22 expression affects ERBB2-driven tumorigenesis, we introduced conditional overexpression or deletion alleles of Usp22 into mice bearing the Mouse mammary tumor virus-Neu-Ires-Cre (MMTV-NIC) transgene, which drives both rat ERBB2/NEU expression and Cre recombinase activity from the MMTV promoter resulting in mammary tumor formation. We found that USP22 overexpression in mammary glands did not further enhance primary tumorigenesis in MMTV-NIC female mice, but increased lung metastases were observed. However, deletion of Usp22 significantly decreased tumor burden and increased survival of MMTV-NIC mice. These effects were associated with markedly decreased levels of both Erbb2 mRNA and protein, indicating Usp22 loss impacts MMTV promoter activity. Usp22 loss had no impact on ERBB2 expression in other settings, including MCF10A cells bearing a Cytomegalovirus (CMV)-driven ERBB2 transgene or in human epidermal growth factor receptor 2 (HER2)+ human SKBR3 and HCC1953 cells. Decreased activity of the MMTV promoter in MMTV-NIC mice correlated with decreased expression of known regulatory factors, including the glucocorticoid receptor (GR), the progesterone receptor (PR), and the chromatin remodeling factor Brahma-related gene-1 (BRG1). Together our findings indicate that increased expression of USP22 does not augment the activity of an activated ERBB2/NEU transgene but impacts of Usp22 loss on tumorigenesis cannot be assessed in this model due to unexpected effects on MMTV-driven Erbb2/Neu expression.


Asunto(s)
Neoplasias Mamarias Experimentales , Ratones , Ratas , Femenino , Humanos , Animales , Ratones Transgénicos , Neoplasias Mamarias Experimentales/patología , Virus del Tumor Mamario del Ratón/genética , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Transformación Celular Neoplásica/genética , Carcinogénesis/genética , Ubiquitina Tiolesterasa/genética
6.
bioRxiv ; 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37732252

RESUMEN

Histone acetyltransferases KAT2A and KAT2B are paralogs highly expressed in the intestinal epithelium, but their functions are not well understood. In this study, double knockout of murine Kat2 genes in the intestinal epithelium was lethal, resulting in robust activation of interferon signaling and interferon-associated phenotypes including the loss of intestinal stem cells. Use of pharmacological agents and sterile organoid cultures indicated a cell-intrinsic double-stranded RNA trigger for interferon signaling. Acetyl-proteomics and dsRIP-seq were employed to interrogate the mechanism behind this response, which identified mitochondria-encoded double-stranded RNA as the source of intrinsic interferon signaling. Kat2a and Kat2b therefore play an essential role in regulating mitochondrial functions as well as maintaining intestinal health.

7.
Nat Cell Biol ; 24(4): 412-414, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35411082
8.
Mol Cell ; 82(4): 716-727, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35016034

RESUMEN

Protein acetylation is conserved across phylogeny and has been recognized as one of the most prominent post-translational modifications since its discovery nearly 60 years ago. Histone acetylation is an active mark characteristic of open chromatin, but acetylation on specific lysine residues and histone variants occurs in different biological contexts and can confer various outcomes. The significance of acetylation events is indicated by the associations of lysine acetyltransferases, deacetylases, and acetyl-lysine readers with developmental disorders and pathologies. Recent advances have uncovered new roles of acetylation regulators in chromatin-centric events, which emphasize the complexity of these functional networks. In this review, we discuss mechanisms and dynamics of acetylation in chromatin organization and DNA-templated processes, including gene transcription and DNA repair and replication.


Asunto(s)
Ensamble y Desensamble de Cromatina , Cromatina/metabolismo , Histonas/metabolismo , Procesamiento Proteico-Postraduccional , Acetilación , Animales , Cromatina/genética , Reparación del ADN , Replicación del ADN , Inestabilidad Genómica , Histonas/genética , Humanos , Lisina , Transcripción Genética
9.
Exp Dermatol ; 31(3): 330-340, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34657330

RESUMEN

Loss of function mutations in HOXC13 have been associated with Ectodermal Dysplasia-9, Hair/Nail Type (ECTD9) in consanguineous families, characterized by sparse to complete absence of hair and nail dystrophy. Here we characterize the spontaneous mouse mutation Naked (N) as a terminal truncation in the Hoxc13 (homeobox C13) gene. Similar to previous reports for homozygous Hoxc13 knock-out (KO) mice, homozygous N/N mice exhibit generalized alopecia with abnormal nails and a short lifespan. However, in contrast to Hoxc13 heterozygous KO mice, N/+ mice show generalized or partial alopecia, associated with loss of hair fibres, along with normal lifespan and fertility. Our data point to a lack of nonsense-mediated Hoxc13 transcript decay and the presence of the truncated mutant protein in N/N and N/+ hair follicles, thus suggesting a dominant-negative mutation. To our knowledge, this is the first report of a semi-dominant and potentially dominant-negative mutation affecting Hoxc13/HOXC13. Furthermore, recreating the N mutant allele in mice using CRISPR/Cas9-mediated genome editing resulted in the same spectrum of deficiencies as those associated with the spontaneous Naked mutation, thus confirming that N is indeed a Hoxc13 mutant allele. Considering the low viability of the Hoxc13 KO mice, the Naked mutation provides an attractive new model for studying ECTD9 disease mechanisms.


Asunto(s)
Displasia Ectodérmica , Enfermedades de la Uña , Alopecia/genética , Animales , Codón sin Sentido , Displasia Ectodérmica/genética , Genes Homeobox , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Ratones , Mutación , Enfermedades de la Uña/genética , Factores de Transcripción/genética
10.
Cancers (Basel) ; 13(17)2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34503086

RESUMEN

Usp22 overexpression is observed in several human cancers and is correlated with poor patient outcomes. The molecular basis underlying this correlation is not clear. Usp22 is the catalytic subunit of the deubiquitylation module in the SAGA histone-modifying complex, which regulates gene transcription. Our previous work demonstrated that the loss of Usp22 in mice leads to decreased expression of several components of receptor tyrosine kinase and TGFß signaling pathways. To determine whether these pathways are upregulated when Usp22 is overexpressed, we created a mouse model that expresses high levels of Usp22 in all tissues. Phenotypic characterization of these mice revealed over-branching of the mammary glands in females. Transcriptomic analyses indicate the upregulation of key pathways involved in mammary gland branching in mammary epithelial cells derived from the Usp22-overexpressing mice, including estrogen receptor, ERK/MAPK, and TGFß signaling. However, Usp22 overexpression did not lead to increased tumorigenesis in any tissue. Our findings indicate that elevated levels of Usp22 are not sufficient to induce tumors, but it may enhance signaling abnormalities associated with oncogenesis.

11.
Epigenetics Chromatin ; 14(1): 26, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-34112237

RESUMEN

The SAGA complex is an evolutionarily conserved transcriptional coactivator that regulates gene expression through its histone acetyltransferase and deubiquitylase activities, recognition of specific histone modifications, and interactions with transcription factors. Multiple lines of evidence indicate the existence of distinct variants of SAGA among organisms as well as within a species, permitting diverse functions to dynamically regulate cellular pathways. Our co-expression analysis of genes encoding human SAGA components showed enrichment in reproductive organs, brain tissues and the skeletal muscle, which corresponds to their established roles in developmental programs, emerging roles in neurodegenerative diseases, and understudied functions in specific cell types. SAGA subunits modulate growth, development and response to various stresses from yeast to plants and metazoans. In metazoans, SAGA further participates in the regulation of differentiation and maturation of both innate and adaptive immune cells, and is associated with initiation and progression of diseases including a broad range of cancers. The evolutionary conservation of SAGA highlights its indispensable role in eukaryotic life, thus deciphering the mechanisms of action of SAGA is key to understanding fundamental biological processes throughout evolution. To illuminate the diversity and conservation of this essential complex, here we discuss variations in composition, essentiality and co-expression of component genes, and its prominent functions across Fungi, Plantae and Animalia kingdoms.


Asunto(s)
Histona Acetiltransferasas , Animales , Secuencia Conservada , Histona Acetiltransferasas/metabolismo , Humanos , Plantas , Procesamiento Proteico-Postraduccional , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética
12.
Biochim Biophys Acta Gene Regul Mech ; 1864(2): 194609, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32730897

RESUMEN

A wealth of biochemical and cellular data, accumulated over several years by multiple groups, has provided a great degree of insight into the molecular mechanisms of actions of GCN5 and PCAF in gene activation. Studies of these lysine acetyltransferases (KATs) in vitro, in cultured cells, have revealed general mechanisms for their recruitment by sequence-specific binding factors and their molecular functions as transcriptional co-activators. Genetic studies indicate that GCN5 and PCAF are involved in multiple developmental processes in vertebrates, yet our understanding of their molecular functions in these contexts remains somewhat rudimentary. Understanding the functions of GCN5/PCAF in developmental processes provides clues to the roles of these KATs in disease states. Here we will review what is currently known about the developmental roles of GCN5 and PCAF, as well as emerging role of these KATs in oncogenesis.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Histona Acetiltransferasas/metabolismo , Neoplasias/genética , Factores de Transcripción p300-CBP/metabolismo , Acetilación , Inmunidad Adaptativa/genética , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Carcinogénesis/genética , Línea Celular Tumoral , Supervivencia Celular/genética , Modelos Animales de Enfermedad , Desarrollo Embrionario/genética , Células Madre Embrionarias/enzimología , Regulación Neoplásica de la Expresión Génica/inmunología , Humanos , Inmunidad Innata/genética , Lisina/metabolismo , Ratones , Ratones Transgénicos , Mutación , Neoplasias/tratamiento farmacológico , Factores de Transcripción p300-CBP/antagonistas & inhibidores
13.
Cancer Res ; 80(24): 5543-5553, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33168647

RESUMEN

Overexpression of the MYC oncoprotein is an initiating step in the formation of several cancers. MYC frequently recruits chromatin-modifying complexes to DNA to amplify the expression of cancer-promoting genes, including those regulating cell cycle, proliferation, and metabolism, yet the roles of specific modifiers in different cancer types are not well defined. Here, we show that GCN5 is an essential coactivator of cell-cycle gene expression driven by MYC overexpression and that deletion of Gcn5 delays or abrogates tumorigenesis in the Eµ-Myc mouse model of B-cell lymphoma. Our results demonstrate that Gcn5 loss impacts both expression and downstream functions of Myc. SIGNIFICANCE: Our results provide important proof of principle for Gcn5 functions in formation and progression of Myc-driven cancers, suggesting that GCN5 may be a viable target for development of new cancer therapies.


Asunto(s)
Carcinogénesis/genética , Linfoma de Células B/genética , Proteínas Proto-Oncogénicas c-myc/genética , Activación Transcripcional , Factores de Transcripción p300-CBP/genética , Animales , Linfocitos B/metabolismo , Células Cultivadas , Femenino , Eliminación de Gen , Genotipo , Linfoma de Células B/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
14.
Cancer Res ; 80(10): 1905-1911, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32094302

RESUMEN

Targeting epigenetic regulators, such as histone-modifying enzymes, provides novel strategies for cancer therapy. The GCN5 lysine acetyltransferase (KAT) functions together with MYC both during normal development and in oncogenesis. As transcription factors, MYC family members are difficult to target with small-molecule inhibitors, but the acetyltransferase domain and the bromodomain in GCN5 might provide alternative targets for disruption of MYC-driven functions. GCN5 is part of two distinct multiprotein histone-modifying complexes, SAGA and ATAC. This review summarizes key findings on the roles of SAGA and ATAC in embryo development and in cancer to better understand the functional relationships of these complexes with MYC family members, as well as their future potential as therapeutic targets.


Asunto(s)
Desarrollo Embrionario , Neoplasias , Proteínas Proto-Oncogénicas c-myc , Factores de Transcripción , Animales , Humanos , Factores de Transcripción p300-CBP
15.
Oncotarget ; 10(56): 5847-5858, 2019 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-31645904

RESUMEN

GCN5, the catalytic subunit in the acetyltransferase modules of SAGA and ATAC, functions as a coactivator of gene transcription. The SAGA complex is recruited to chromatin by transcription factors such as MYC and E2F1 to facilitate acetylation of histones, especially H3 at lysine 9 (H3K9). Burkitt lymphoma is an aggressive subtype of Non-Hodgkin lymphoma driven by the overexpression of MYC. Comparison of GCN5 expression in normal human B cells versus human Burkitt Lymphoma cell lines indicates overexpression of GCN5 in lymphoma. Treatment of Burkitt lymphoma cell lines with a specific inhibitor indicates that decreased GCN5 HAT activity reduces viability and proliferation of these cells. Inhibition of GCN5 HAT activity also induces apoptosis in lymphoma cells. Expression of MYC target genes as well as genes associated with B cell receptor signaling are significantly downregulated upon inhibition of GCN5 enzymatic activity. This downregulation leads to diminished PI3K signaling, a critical pathway in lymphomagenesis. Our data indicate that inhibition of GCN5 HAT activity reduces the tumorigenic properties of human Burkitt lymphoma cells by attenuating BCR signaling and that GCN5 may be a viable target for lymphoma drug therapy.

16.
Am J Cancer Res ; 9(8): 1830-1845, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31497362

RESUMEN

Lung cancer causes the highest mortality in cancer-related deaths. As these cancers often become resistant to existing therapies, definition of novel molecular targets is needed. Epigenetic modifiers may provide such targets. Recent reports suggest that the histone acetyltransferase (HAT) module within the transcriptional coactivator SAGA complex plays a role in cancer, creating a new link between epigenetic regulators and this disease. GCN5 serves as a coactivator for MYC target genes, and here we investigate links between GCN5 and c-MYC in non-small cell lung cancer (NSCLC). Our data indicate that both GCN5 and c-MYC proteins are upregulated in mouse and human NSCLC cells compared to normal lung epithelial cells. This trend is observable only at the protein level, indicating that this upregulation occurs post-transcriptionally. Human NSCLC tissue data provided by The Cancer Genome Atlas (TCGA) indicates that GCN5 and c-MYC expression are positively associated with one another and with the expression of c-MYC target genes. Depletion of GCN5 in NSCLC cells reduces c-MYC expression, cell proliferation, and increases the population of necrotic cells. Similarly, inhibition of the GCN5 catalytic site using a commercially available probe reduces c-MYC expression, cell proliferation, and increases the percentage of cells undergoing apoptosis. Our findings suggest that GCN5 might provide a novel target for inhibition of NSCLC growth and progression.

17.
Cancers (Basel) ; 11(4)2019 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-31003455

RESUMEN

Functions of the GCN5-related N-acetyltransferase (GNAT) family of histone/protein acetyltransferases (HATs) in Foxp3+ T-regulatory (Treg) cells are unexplored, despite the general importance of these enzymes in cell biology. We now show that two prototypical GNAT family members, GCN5 (general control nonrepressed-protein 5, lysine acetyltransferase (KAT)2a) and p300/CBP-associated factor (p300/CBP-associated factor (PCAF), Kat2b) contribute to Treg functions through partially distinct and partially overlapping mechanisms. Deletion of Gcn5 or PCAF did not affect Treg development or suppressive function in vitro, but did affect inducible Treg (iTreg) development, and in vivo, abrogated Treg-dependent allograft survival. Contrasting effects were seen upon targeting of each HAT in all T cells; mice lacking GCN5 showed prolonged allograft survival, suggesting this HAT might be a target for epigenetic therapy in allograft recipients, whereas transplants in mice lacking PCAF underwent acute allograft rejection. PCAF deletion also enhanced anti-tumor immunity in immunocompetent mice. Dual deletion of GCN5 and PCAF led to decreased Treg stability and numbers in peripheral lymphoid tissues, and mice succumbed to severe autoimmunity by 3-4 weeks of life. These data indicate that HATs of the GNAT family have contributions to Treg function that cannot be replaced by the functions of previously characterized Treg HATs (CBP, p300, and Tip60), and may be useful targets in immuno-oncology.

18.
Development ; 146(4)2019 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-30718289

RESUMEN

USP22, a component of the SAGA complex, is overexpressed in highly aggressive cancers, but the normal functions of this deubiquitinase are not well defined. We determined that loss of USP22 in mice results in embryonic lethality due to defects in extra-embryonic placental tissues and failure to establish proper vascular interactions with the maternal circulatory system. These phenotypes arise from abnormal gene expression patterns that reflect defective kinase signaling, including TGFß and several receptor tyrosine kinase pathways. USP22 deletion in endothelial cells and pericytes that are induced from embryonic stem cells also hinders these signaling cascades, with detrimental effects on cell survival and differentiation as well as on the ability to form vessels. Our findings provide new insights into the functions of USP22 during development that may offer clues to its role in disease states.


Asunto(s)
Endopeptidasas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Placenta/metabolismo , Transducción de Señal , Animales , Sistema Cardiovascular/metabolismo , Diferenciación Celular , Supervivencia Celular , Membrana Corioalantoides/metabolismo , Oído Interno/embriología , Células Madre Embrionarias/metabolismo , Células Endoteliales/metabolismo , Femenino , Expresión Génica , Perfilación de la Expresión Génica , Ratones , Fenotipo , Embarazo , Procesamiento Proteico-Postraduccional , Factores de Tiempo , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Ubiquitina Tiolesterasa
19.
Cancer Res ; 79(1): 33-46, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30341066

RESUMEN

In cancer cells, epithelial-to-mesenchymal transition (EMT) is controlled by Snail1, a transcriptional factor also required for the activation of cancer-associated fibroblasts (CAF). Snail1 is short-lived in normal epithelial cells as a consequence of its coordinated and continuous ubiquitination by several F-box-specific E3 ligases, but its degradation is prevented in cancer cells and in activated fibroblasts. Here, we performed an siRNA screen and identified USP27X as a deubiquitinase that increases Snail1 stability. Expression of USP27X in breast and pancreatic cancer cell lines and tumors positively correlated with Snail1 expression levels. Accordingly, downregulation of USP27X decreased Snail1 protein in several tumor cell lines. USP27X depletion impaired Snail1-dependent cell migration and invasion and metastasis formation and increased cellular sensitivity to cisplatin. USP27X was upregulated by TGFß during EMT and was required for TGFß-induced expression of Snail1 and other mesenchymal markers in epithelial cells and CAF. In agreement with this, depletion of USP27X prevented TGFß-induced EMT and fibroblast activation. Collectively, these results indicate that USP27X is an essential protein controlling Snail1 expression and function and may serve as a target for inhibition of Snail1-dependent tumoral invasion and chemoresistance. SIGNIFICANCE: These findings show that inhibition of USP27X destabilizes Snail1 to impair EMT and renders tumor cells sensitive to chemotherapy, thus opening new strategies for the inhibition of Snail1 expression and its protumoral actions.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/1/33/F1.large.jpg.


Asunto(s)
Neoplasias de la Mama/patología , Movimiento Celular , Resistencia a Antineoplásicos , Factores de Transcripción de la Familia Snail/química , Factor de Crecimiento Transformador beta/metabolismo , Proteasas Ubiquitina-Específicas/metabolismo , Ubiquitina/metabolismo , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Fibroblastos Asociados al Cáncer , Transición Epitelial-Mesenquimal , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Invasividad Neoplásica , Estabilidad Proteica , ARN Interferente Pequeño/genética , Factores de Transcripción de la Familia Snail/genética , Factores de Transcripción de la Familia Snail/metabolismo , Factor de Crecimiento Transformador beta/genética , Células Tumorales Cultivadas , Proteasas Ubiquitina-Específicas/antagonistas & inhibidores , Proteasas Ubiquitina-Específicas/genética , Ensayos Antitumor por Modelo de Xenoinjerto
20.
JCI Insight ; 3(16)2018 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-30135305

RESUMEN

Ion channel-controlled cell volume regulation is of fundamental significance to the physiological function of sperm. In addition to volume regulation, LRRC8A-dependent volume-regulated anion channel (VRAC) activity is involved in cell cycle progression, insulin signaling, and cisplatin resistance. Nevertheless, the contribution of LRRC8A and its dependent VRAC activity in the germ cell lineage remain unknown. By utilizing a spontaneous Lrrc8a mouse mutation (c.1325delTG, p.F443*) and genetically engineered mouse models, we demonstrate that LRRC8A-dependent VRAC activity is essential for male germ cell development and fertility. Lrrc8a-null male germ cells undergo progressive degeneration independent of the apoptotic pathway during postnatal testicular development. Lrrc8a-deficient mouse sperm exhibit multiple morphological abnormalities of the flagella (MMAF), a feature commonly observed in the sperm of infertile human patients. Importantly, we identified a human patient with a rare LRRC8A hypomorphic mutation (c.1634G>A, p.Arg545His) possibly linked to Sertoli cell-only syndrome (SCOS), a male sterility disorder characterized by the loss of germ cells. Thus, LRRC8A is a critical factor required for germ cell development and volume regulation in the mouse, and it might serve as a novel diagnostic and therapeutic target for SCOS patients.


Asunto(s)
Flagelos/patología , Infertilidad Masculina/genética , Proteínas de la Membrana/genética , Adulto , Animales , Aniones/metabolismo , Transporte Biológico Activo/genética , Biomarcadores/análisis , Estudios de Casos y Controles , Supervivencia Celular/genética , China , Modelos Animales de Enfermedad , Femenino , Voluntarios Sanos , Humanos , Infertilidad Masculina/diagnóstico , Infertilidad Masculina/patología , Transporte Iónico/genética , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Mutación , Motilidad Espermática/genética , Espermatozoides/citología , Espermatozoides/patología , Testículo/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA