Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ISME J ; 17(9): 1504-1516, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37524910

RESUMEN

Experimental studies of microbial evolution have largely focused on monocultures of model organisms, but most microbes live in communities where interactions with other species may impact rates and modes of evolution. Using the cheese rind model microbial community, we determined how species interactions shape the evolution of the widespread food- and animal-associated bacterium Staphylococcus xylosus. We evolved S. xylosus for 450 generations alone or in co-culture with one of three microbes: the yeast Debaryomyces hansenii, the bacterium Brevibacterium aurantiacum, and the mold Penicillium solitum. We used the frequency of colony morphology mutants (pigment and colony texture phenotypes) and whole-genome sequencing of isolates to quantify phenotypic and genomic evolution. The yeast D. hansenii strongly promoted diversification of S. xylosus. By the end of the experiment, all populations co-cultured with the yeast were dominated by pigment and colony morphology mutant phenotypes. Populations of S. xylosus grown alone, with B. aurantiacum, or with P. solitum did not evolve novel phenotypic diversity. Whole-genome sequencing of individual mutant isolates across all four treatments identified numerous unique mutations in the operons for the SigB, Agr, and WalRK global regulators, but only in the D. hansenii treatment. Phenotyping and RNA-seq experiments highlighted altered pigment and biofilm production, spreading, stress tolerance, and metabolism of S. xylosus mutants. Fitness experiments revealed antagonistic pleiotropy, where beneficial mutations that evolved in the presence of the yeast had strong negative fitness effects in other biotic environments. This work demonstrates that bacterial-fungal interactions can have long-term evolutionary consequences within multispecies microbiomes by facilitating the evolution of strain diversity.


Asunto(s)
Saccharomyces cerevisiae , Staphylococcus , Animales , Staphylococcus/genética , Bacterias , Interacciones Microbianas , Hongos
2.
mBio ; 13(4): e0199322, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35968955

RESUMEN

P-glycoprotein (P-gp) is a key component of the intestinal epithelium playing a pivotal role in removal of toxins and efflux of endocannabinoids to prevent excessive inflammation and sustain homeostasis. Recent studies revealed butyrate and secondary bile acids, produced by the intestinal microbiome, potentiate the induction of functional P-gp expression. We now aim to determine the molecular mechanism by which this functional microbiome output regulates P-gp. RNA sequencing of intestinal epithelial cells responding to butyrate and secondary bile acids in combination discovered a unique transcriptional program involving multiple pathways that converge on P-gp induction. Using shRNA knockdown and CRISPR/Cas9 knockout cell lines, as well as mouse models, we confirmed the RNA sequencing findings and discovered a role for intestinal HNF4α in P-gp regulation. These findings shed light on a sophisticated signaling network directed by intestinal microbial metabolites that orchestrate P-gp expression and highlight unappreciated connections between multiple pathways linked to colonic health. IMPORTANCE Preventing aberrant inflammation is essential to maintaining homeostasis in the mammalian intestine. Although P-glycoprotein (P-gp) expression in the intestine is critical for protecting the intestinal epithelium from toxins and damage due to neutrophil infiltration, its regulation in the intestine is poorly understood. Findings presented in our current study have now uncovered a sophisticated and heretofore unappreciated intracellular signaling network or "reactome" directed by intestinal microbial metabolites that orchestrate regulation of P-gp. Not only do we confirm the role of histone deacetylases (HDAC) inhibition and nuclear receptor activation in P-gp induction by butyrate and bile acids, but we also discovered new signaling pathways and transcription factors that are uniquely activated in response to the combination of microbial metabolites. Such findings shed new light into a multi-tiered network that maintains P-gp expression in the intestine in the context of the fluctuating commensal microbiome, to sustain a homeostatic tone in the absence of infection or insult.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP , Mucosa Intestinal , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Animales , Ácidos y Sales Biliares/metabolismo , Butiratos/metabolismo , Inflamación , Mucosa Intestinal/metabolismo , Mamíferos/metabolismo , Ratones
3.
J Tissue Eng Regen Med ; 13(9): 1712-1723, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31278844

RESUMEN

Bidirectional interactions between the human central nervous system and the gastrointestinal tract, via the enteric nervous system, are unmapped and central to many human conditions. There is a critical need to develop 3D human in vitro intestinal tissue models to emulate the intricate cell interactions of the human enteric nervous system within the gastrointestinal tract in order to better understand these complex interactions that cannot be studied utilizing in vivo animal models. In vitro systems, if sufficiently replicative of some in vivo conditions, may assist with the study of individual cell interactions. Here, we describe a 3D-innervated tissue model of the human intestine consisting of human-induced neural stem cells differentiated into relevant enteric nervous system neural cell types. Enterocyte-like (Caco-2) and goblet-like (HT29-MTX) cells are used to form the intestinal epithelial layer, and intestinal myofibroblasts are utilized to simulate the stromal layer. In vitro enteric nervous system cultures supported survival and function of the various cell types, with mucosal and neural transcription factors evident over 5 weeks. The human-induced neural stem cells migrated from the seeding location on the peripheral layer of the hollow scaffolds toward the luminal epithelial cells, prompted by the addition of neural growth factor. nNOS-expressing neurons and the substance P precursor gene TAC1 were expressed within the in vitro enteric nervous system to support the utility of the tissue model to recapitulate enteric nervous system phenotypes. This innervated tissue system offers a new tool to use to help in understanding neural circuits controlling the human intestine and associated communication networks.


Asunto(s)
Bioingeniería/métodos , Sistema Nervioso Entérico/fisiología , Animales , Células CACO-2 , Diferenciación Celular , Movimiento Celular , Supervivencia Celular , Pollos , Tracto Gastrointestinal/inervación , Células HT29 , Humanos , Células-Madre Neurales/citología , Tubo Neural/citología , Andamios del Tejido/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...