Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancer Causes Control ; 33(5): 711-726, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35107724

RESUMEN

PURPOSE: The Risk of Pediatric and Adolescent Cancer Associated with Medical Imaging (RIC) Study is quantifying the association between cumulative radiation exposure from fetal and/or childhood medical imaging and subsequent cancer risk. This manuscript describes the study cohorts and research methods. METHODS: The RIC Study is a longitudinal study of children in two retrospective cohorts from 6 U.S. healthcare systems and from Ontario, Canada over the period 1995-2017. The fetal-exposure cohort includes children whose mothers were enrolled in the healthcare system during their entire pregnancy and followed to age 20. The childhood-exposure cohort includes children born into the system and followed while continuously enrolled. Imaging utilization was determined using administrative data. Computed tomography (CT) parameters were collected to estimate individualized patient organ dosimetry. Organ dose libraries for average exposures were constructed for radiography, fluoroscopy, and angiography, while diagnostic radiopharmaceutical biokinetic models were applied to estimate organ doses received in nuclear medicine procedures. Cancers were ascertained from local and state/provincial cancer registry linkages. RESULTS: The fetal-exposure cohort includes 3,474,000 children among whom 6,606 cancers (2394 leukemias) were diagnosed over 37,659,582 person-years; 0.5% had in utero exposure to CT, 4.0% radiography, 0.5% fluoroscopy, 0.04% angiography, 0.2% nuclear medicine. The childhood-exposure cohort includes 3,724,632 children in whom 6,358 cancers (2,372 leukemias) were diagnosed over 36,190,027 person-years; 5.9% were exposed to CT, 61.1% radiography, 6.0% fluoroscopy, 0.4% angiography, 1.5% nuclear medicine. CONCLUSION: The RIC Study is poised to be the largest study addressing risk of childhood and adolescent cancer associated with ionizing radiation from medical imaging, estimated with individualized patient organ dosimetry.


Asunto(s)
Leucemia , Adolescente , Adulto , Niño , Femenino , Humanos , Estudios Longitudinales , Ontario/epidemiología , Embarazo , Radiografía , Estudios Retrospectivos , Adulto Joven
2.
JAMA Netw Open ; 2(7): e197249, 2019 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-31339541

RESUMEN

Importance: The use of medical imaging has sharply increased over the last 2 decades. Imaging rates during pregnancy have not been quantified in a large, multisite study setting. Objective: To evaluate patterns of medical imaging during pregnancy. Design, Setting, and Participants: A retrospective cohort study was performed at 6 US integrated health care systems and in Ontario, Canada. Participants included pregnant women who gave birth to a live neonate of at least 24 weeks' gestation between January 1, 1996, and December 31, 2016, and who were enrolled in the health care system for the entire pregnancy. Exposures: Computed tomography (CT), magnetic resonance imaging, conventional radiography, angiography and fluoroscopy, and nuclear medicine. Main Outcomes and Measures: Imaging rates per pregnancy stratified by country and year of child's birth. Results: A total of 3 497 603 pregnancies in 2 211 789 women were included. Overall, 26% of pregnancies were from US sites. Most (92%) were in women aged 20 to 39 years, and 85% resulted in full-term births. Computed tomography imaging rates in the United States increased from 2.0 examinations/1000 pregnancies in 1996 to 11.4/1000 pregnancies in 2007, remained stable through 2010, and decreased to 9.3/1000 pregnancies by 2016, for an overall increase of 3.7-fold. Computed tomography rates in Ontario, Canada, increased more gradually by 2.0-fold, from 2.0/1000 pregnancies in 1996 to 6.2/1000 pregnancies in 2016, which was 33% lower than in the United States. Overall, 5.3% of pregnant women in US sites and 3.6% in Ontario underwent imaging with ionizing radiation, and 0.8% of women at US sites and 0.4% in Ontario underwent CT. Magnetic resonance imaging rates increased steadily from 1.0/1000 pregnancies in 1996 to 11.9/1000 pregnancies in 2016 in the United States and from 0.5/1000 pregnancies in 1996 to 9.8/1000 pregnancies in 2016 in Ontario, surpassing CT rates in 2013 in the United States and in 2007 in Ontario. In the United States, radiography rates doubled from 34.5/1000 pregnancies in 1996 to 72.6/1000 pregnancies in 1999 and then decreased to 47.6/1000 pregnancies in 2016; rates in Ontario slowly increased from 36.2/1000 pregnancies in 1996 to 44.7/1000 pregnancies in 2016. Angiography and fluoroscopy and nuclear medicine use rates were low (5.2/1000 pregnancies), but in most years, higher in Ontario than the United States. Imaging rates were highest for women who were younger than 20 years or aged 40 years or older, gave birth preterm, or were black, Native American, or Hispanic (US data only). Considering advanced imaging only, chest imaging of pregnant women was more likely to use CT in the United States and nuclear medicine imaging in Ontario. Conclusions and Relevance: The use of CT during pregnancy substantially increased in the United States and Ontario over the past 2 decades. Imaging rates during pregnancy should be monitored to avoid unnecessary exposure of women and fetuses to ionizing radiation.


Asunto(s)
Diagnóstico por Imagen/estadística & datos numéricos , Adulto , Diagnóstico por Imagen/clasificación , Femenino , Edad Gestacional , Humanos , Imagen por Resonancia Magnética/estadística & datos numéricos , Ontario , Embarazo , Atención Prenatal/estadística & datos numéricos , Radiación Ionizante , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/estadística & datos numéricos , Estados Unidos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...