Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Cell ; 83(23): 4239-4254.e10, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38065062

RESUMEN

A common mRNA modification is 5-methylcytosine (m5C), whose role in gene-transcript processing and cancer remains unclear. Here, we identify serine/arginine-rich splicing factor 2 (SRSF2) as a reader of m5C and impaired SRSF2 m5C binding as a potential contributor to leukemogenesis. Structurally, we identify residues involved in m5C recognition and the impact of the prevalent leukemia-associated mutation SRSF2P95H. We show that SRSF2 binding and m5C colocalize within transcripts. Furthermore, knocking down the m5C writer NSUN2 decreases mRNA m5C, reduces SRSF2 binding, and alters RNA splicing. We also show that the SRSF2P95H mutation impairs the ability of the protein to read m5C-marked mRNA, notably reducing its binding to key leukemia-related transcripts in leukemic cells. In leukemia patients, low NSUN2 expression leads to mRNA m5C hypomethylation and, combined with SRSF2P95H, predicts poor outcomes. Altogether, we highlight an unrecognized mechanistic link between epitranscriptomics and a key oncogenesis driver.


Asunto(s)
Leucemia , Síndromes Mielodisplásicos , Neoplasias , Metilación de ARN , Factores de Empalme Serina-Arginina , Humanos , Leucemia/genética , Síndromes Mielodisplásicos/genética , Neoplasias/genética , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Factores de Empalme Serina-Arginina/genética , Metilación de ARN/genética
2.
J Exp Clin Cancer Res ; 42(1): 78, 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-36998085

RESUMEN

BACKGROUND: Aerobic glycolysis, also known as the Warburg effect, is predominantly upregulated in a variety of solid tumors, including breast cancer. We have previously reported that methylglyoxal (MG), a very reactive by-product of glycolysis, unexpectedly enhanced the metastatic potential in triple negative breast cancer (TNBC) cells. MG and MG-derived glycation products have been associated with various diseases, such as diabetes, neurodegenerative disorders, and cancer. Glyoxalase 1 (GLO1) exerts an anti-glycation defense by detoxifying MG to D-lactate. METHODS: Here, we used our validated model consisting of stable GLO1 depletion to induce MG stress in TNBC cells. Using genome-scale DNA methylation analysis, we report that this condition resulted in DNA hypermethylation in TNBC cells and xenografts. RESULTS: GLO1-depleted breast cancer cells showed elevated expression of DNMT3B methyltransferase and significant loss of metastasis-related tumor suppressor genes, as assessed using integrated analysis of methylome and transcriptome data. Interestingly, MG scavengers revealed to be as potent as typical DNA demethylating agents at triggering the re-expression of representative silenced genes. Importantly, we delineated an epigenomic MG signature that effectively stratified TNBC patients based on survival. CONCLUSION: This study emphasizes the importance of MG oncometabolite, occurring downstream of the Warburg effect, as a novel epigenetic regulator and proposes MG scavengers to reverse altered patterns of gene expression in TNBC.


Asunto(s)
Metilación de ADN , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/metabolismo , Piruvaldehído/metabolismo , Línea Celular Tumoral , Transcriptoma , Regulación Neoplásica de la Expresión Génica
3.
Epigenetics ; 17(4): 422-443, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-33960278

RESUMEN

Ten-Eleven Translocation (TET) proteins convert 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) leading to a dynamic epigenetic state of DNA that can influence transcription and chromatin organization. While TET proteins interact with complexes involved in transcriptional repression and activation, the overall understanding of the molecular mechanisms involved in TET-mediated regulation of gene expression still remains limited. Here, we show that TET proteins interact with the chromatin remodelling protein lymphoid-specific helicase (LSH/HELLS) in vivo and in vitro. In mouse embryonic fibroblasts (MEFs) and embryonic stem cells (ESCs) knock out of Lsh leads to a significant reduction of 5-hydroxymethylation amount in the DNA. Whole genome sequencing of 5hmC in wild-type versus Lsh knock-out MEFs and ESCs showed that in absence of Lsh, some regions of the genome gain 5hmC while others lose it, with mild correlation with gene expression changes. We further show that differentially hydroxymethylated regions did not completely overlap with differentially methylated regions indicating that changes in 5hmC distribution upon Lsh knock-out are not a direct consequence of 5mC decrease. Altogether, our results suggest that LSH, which interacts with TET proteins, contributes to the regulation of 5hmC levels and distribution in MEFs and ESCs.


Asunto(s)
Ensamble y Desensamble de Cromatina , Metilación de ADN , 5-Metilcitosina/metabolismo , Animales , Citosina/metabolismo , ADN/metabolismo , ADN Helicasas/metabolismo , Fibroblastos/metabolismo , Genoma , Ratones
4.
Nat Cancer ; 2(6): 611-628, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-35121941

RESUMEN

Post-transcriptional modifications of RNA constitute an emerging regulatory layer of gene expression. The demethylase fat mass- and obesity-associated protein (FTO), an eraser of N6-methyladenosine (m6A), has been shown to play a role in cancer, but its contribution to tumor progression and the underlying mechanisms remain unclear. Here, we report widespread FTO downregulation in epithelial cancers associated with increased invasion, metastasis and worse clinical outcome. Both in vitro and in vivo, FTO silencing promotes cancer growth, cell motility and invasion. In human-derived tumor xenografts (PDXs), FTO pharmacological inhibition favors tumorigenesis. Mechanistically, we demonstrate that FTO depletion elicits an epithelial-to-mesenchymal transition (EMT) program through increased m6A and altered 3'-end processing of key mRNAs along the Wnt signaling cascade. Accordingly, FTO knockdown acts via EMT to sensitize mouse xenografts to Wnt inhibition. We thus identify FTO as a key regulator, across epithelial cancers, of Wnt-triggered EMT and tumor progression and reveal a therapeutically exploitable vulnerability of FTO-low tumors.


Asunto(s)
Neoplasias Glandulares y Epiteliales , ARN , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Animales , Regulación hacia Abajo/genética , Transición Epitelial-Mesenquimal/genética , Humanos , Ratones
5.
Nat Commun ; 11(1): 4956, 2020 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-33009383

RESUMEN

Tet-enzyme-mediated 5-hydroxymethylation of cytosines in DNA plays a crucial role in mouse embryonic stem cells (ESCs). In RNA also, 5-hydroxymethylcytosine (5hmC) has recently been evidenced, but its physiological roles are still largely unknown. Here we show the contribution and function of this mark in mouse ESCs and differentiating embryoid bodies. Transcriptome-wide mapping in ESCs reveals hundreds of messenger RNAs marked by 5hmC at sites characterized by a defined unique consensus sequence and particular features. During differentiation a large number of transcripts, including many encoding key pluripotency-related factors (such as Eed and Jarid2), show decreased cytosine hydroxymethylation. Using Tet-knockout ESCs, we find Tet enzymes to be partly responsible for deposition of 5hmC in mRNA. A transcriptome-wide search further reveals mRNA targets to which Tet1 and Tet2 bind, at sites showing a topology similar to that of 5hmC sites. Tet-mediated RNA hydroxymethylation is found to reduce the stability of crucial pluripotency-promoting transcripts. We propose that RNA cytosine 5-hydroxymethylation by Tets is a mark of transcriptome flexibility, inextricably linked to the balance between pluripotency and lineage commitment.


Asunto(s)
5-Metilcitosina/análogos & derivados , Diferenciación Celular , Proteínas de Unión al ADN/metabolismo , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , ARN/metabolismo , 5-Metilcitosina/metabolismo , Animales , Especificidad de Anticuerpos/inmunología , Secuencia de Bases , Dioxigenasas , Cuerpos Embrioides/metabolismo , Ratones , Modelos Biológicos , Células Madre Pluripotentes/metabolismo , Unión Proteica , Estabilidad del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcriptoma/genética
6.
Cancer Lett ; 438: 32-43, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30201302

RESUMEN

Prostate cancers have a strong propensity to metastasize to bone and promote osteoblastic lesions. TMPRSS2:ERG is the most frequent gene rearrangement identified in prostate cancer, but whether it is involved in prostate cancer bone metastases is largely unknown. We exploited an intratibial metastasis model to address this issue and we found that ectopic expression of the TMPRSS2:ERG fusion enhances the ability of prostate cancer cell lines to induce osteoblastic lesions by stimulating bone formation and inhibiting the osteolytic response. In line with these in vivo results, we demonstrate that the TMPRSS2:ERG fusion protein increases the expression of osteoblastic markers, including Collagen Type I Alpha 1 Chain and Alkaline Phosphatase, as well as Endothelin-1, a protein with a documented role in osteoblastic bone lesion formation. Moreover, we determined that the TMPRSS2:ERG fusion protein is bound to the regulatory regions of these genes in prostate cancer cell lines, and we report that the expression levels of these osteoblastic markers are correlated with the expression of the TMPRSS2:ERG fusion in patient metastasis samples. Taken together, our results reveal that the TMPRSS2:ERG gene fusion is involved in osteoblastic lesion formation induced by prostate cancer cells.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias Óseas/genética , Regulación Neoplásica de la Expresión Génica , Proteínas de Fusión Oncogénica/genética , Osteoblastos/metabolismo , Neoplasias de la Próstata/genética , Fosfatasa Alcalina/genética , Fosfatasa Alcalina/metabolismo , Animales , Biomarcadores de Tumor/metabolismo , Neoplasias Óseas/metabolismo , Neoplasias Óseas/secundario , Línea Celular Tumoral , Cadena alfa 1 del Colágeno Tipo I , Endotelina-1/genética , Endotelina-1/metabolismo , Humanos , Masculino , Ratones SCID , Proteínas de Fusión Oncogénica/metabolismo , Osteoblastos/patología , Células PC-3 , Fenotipo , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Trasplante Heterólogo , Carga Tumoral/genética
7.
Oncotarget ; 8(7): 11827-11840, 2017 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-28055969

RESUMEN

Bone metastasis is the major deleterious event in prostate cancer (PCa). TMPRSS2-ERG fusion is one of the most common chromosomic rearrangements in PCa. However, its implication in bone metastasis development is still unclear. Since bone metastasis starts with the tropism of cancer cells to bone through specific migratory and invasive processes involving osteomimetic capabilities, it is crucial to better our understanding of the influence of TMPRSS2-ERG expression in the mechanisms underlying the bone tropism properties of PCa cells. We developed bioluminescent cell lines expressing the TMPRSS2-ERG fusion in order to assess its role in tumor growth and bone metastasis appearance in a mouse model. First, we showed that the TMPRSS2-ERG fusion increases cell migration and subcutaneous tumor size. Second, using intracardiac injection experiments in mice, we showed that the expression of TMPRSS2-ERG fusion increases the number of metastases in bone. Moreover, TMPRSS2-ERG affects the pattern of metastatic spread by increasing the incidence of tumors in hind limbs and spine, which are two of the most frequent sites of human PCa metastases. Finally, transcriptome analysis highlighted a series of genes regulated by the fusion and involved in the metastatic process. Altogether, our work indicates that TMPRSS2-ERG increases bone tropism of PCa cells and metastasis development.


Asunto(s)
Neoplasias Óseas/metabolismo , Neoplasias Óseas/secundario , Proteínas de Fusión Oncogénica/biosíntesis , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Animales , Neoplasias Óseas/genética , Línea Celular Tumoral , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Xenoinjertos , Humanos , Masculino , Ratones , Ratones SCID , Metástasis de la Neoplasia , Proteínas de Fusión Oncogénica/genética , Neoplasias de la Próstata/genética , Transfección
8.
Oncotarget ; 7(37): 58939-58952, 2016 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-27449289

RESUMEN

DNA methylation and histone modifications are key epigenetic regulators of gene expression, and tight connections are known between the two. DNA methyltransferases are upregulated in several tumors and aberrant DNA methylation profiles are a cancer hallmark. On the other hand, histone demethylases are upregulated in cancer cells. Previous work on ES cells has shown that the lysine demethylase KDM1A binds to DNMT1, thereby affecting DNA methylation. In cancer cells, the occurrence of this interaction has not been explored. Here we demonstrate in several tumor cell lines an interaction between KDM1A and both DNMT1 and DNMT3B. Intriguingly and in contrast to what is observed in ES cells, KDM1A depletion in cancer cells was found not to trigger any reduction in the DNMT1 or DNMT3B protein level or any change in DNA methylation. In the S-phase, furthermore, KDM1A and DNMT1 were found, to co-localize within the heterochromatin. Using P-LISA, we revealed substantially increased binding of KDM1A to DNMT1 during the S-phase. Together, our findings propose a mechanistic link between KDM1A and DNA methyltransferases in cancer cells and suggest that the KDM1A/DNMT1 interaction may play a role during replication. Our work also strengthens the idea that DNMTs can exert functions unrelated to act on DNA methylation.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Histona Demetilasas/metabolismo , Neoplasias/metabolismo , Puntos de Control de la Fase S del Ciclo Celular , Animales , Carcinogénesis , Metilación de ADN , Células HeLa , Histona Demetilasas/genética , Histonas/metabolismo , Humanos , Lisina , Ratones , Células 3T3 NIH , Unión Proteica , ADN Metiltransferasa 3B
9.
Science ; 351(6270): 282-5, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26816380

RESUMEN

Hydroxymethylcytosine, well described in DNA, occurs also in RNA. Here, we show that hydroxymethylcytosine preferentially marks polyadenylated RNAs and is deposited by Tet in Drosophila. We map the transcriptome-wide hydroxymethylation landscape, revealing hydroxymethylcytosine in the transcripts of many genes, notably in coding sequences, and identify consensus sites for hydroxymethylation. We found that RNA hydroxymethylation can favor mRNA translation. Tet and hydroxymethylated RNA are found to be most abundant in the Drosophila brain, and Tet-deficient fruitflies suffer impaired brain development, accompanied by decreased RNA hydroxymethylation. This study highlights the distribution, localization, and function of cytosine hydroxymethylation and identifies central roles for this modification in Drosophila.


Asunto(s)
Encéfalo/anomalías , Citosina/análogos & derivados , Drosophila melanogaster/crecimiento & desarrollo , ARN Mensajero/metabolismo , 5-Metilcitosina/análogos & derivados , Animales , Encéfalo/metabolismo , Línea Celular , Citosina/metabolismo , Dioxigenasas/genética , Dioxigenasas/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Metilación , ARN Mensajero/genética , Transcriptoma
10.
Mol Biosyst ; 12(2): 404-13, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26621457

RESUMEN

MicroRNAs (miRNAs) are small non-coding RNAs that post-transcriptionally regulate gene expression. Alteration of miRNA levels is common in tumors and contributes to the pathogenesis of human malignancies. In the present study we examined the role played by miR-137 in breast tumorigenesis. We found miR-137 levels to be lower in breast cancer cells than in their non-tumorigenic counterparts and observed reduced proliferation and migration of breast cancer cells overexpressing miR-137. We further identified KDM5B, a histone demethylase known to be involved in breast cancer tumorigenesis, as a target of miR-137. As the involvement of histone demethylases in cancer is still poorly understood and as the role of miRNAs in controlling epigenetic mechanisms in cancer is emerging, we broadened our study to the whole KDM5 histone demethylase family to see if the genes coding for these epigenetic enzymes might be regulated by miRNAs in cancer cells. We discovered that KDM5C is overexpressed in breast cancer cells, providing evidence that miR-138 regulates its expression. We found miR-138 overexpression to affect breast cancer cell proliferation. Altogether, our findings suggest that miRNAs may regulate KDM5 histone demethylase levels in breast cancer and thereby control breast cancer cell proliferation and migration.


Asunto(s)
Neoplasias de la Mama/enzimología , Histona Demetilasas/metabolismo , Histona Demetilasas con Dominio de Jumonji/metabolismo , MicroARNs/fisiología , Proteínas Nucleares/metabolismo , Proteínas Represoras/metabolismo , Regiones no Traducidas 3' , Secuencia de Bases , Sitios de Unión , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Represión Enzimática , Femenino , Regulación Neoplásica de la Expresión Génica , Histona Demetilasas/genética , Humanos , Histona Demetilasas con Dominio de Jumonji/genética , Proteínas Nucleares/genética , Interferencia de ARN , Proteínas Represoras/genética
11.
Sci Rep ; 5: 12714, 2015 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-26239807

RESUMEN

The TET enzymes convert methylcytosine to the newly discovered base hydroxymethylcytosine. While recent reports suggest that TETs may play a role in response to oxidative stress, this role remains uncertain, and results lack in vivo models. Here we show a global decrease of hydroxymethylcytosine in cells treated with buthionine sulfoximine, and in mice depleted for the major antioxidant enzymes GPx1 and 2. Furthermore, genome-wide profiling revealed differentially hydroxymethylated regions in coding genes, and intriguingly in microRNA genes, both involved in response to oxidative stress. These results thus suggest a profound effect of in vivo oxidative stress on the global hydroxymethylome.


Asunto(s)
5-Metilcitosina/metabolismo , Proteínas de Unión al ADN/genética , Genoma , MicroARNs/genética , Neuronas/metabolismo , Proteínas Proto-Oncogénicas/genética , 5-Metilcitosina/análogos & derivados , Animales , Antimetabolitos/farmacología , Butionina Sulfoximina/farmacología , Línea Celular Tumoral , Proteínas de Unión al ADN/metabolismo , Dioxigenasas , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Glutatión/antagonistas & inhibidores , Glutatión/biosíntesis , Glutatión Peroxidasa/deficiencia , Glutatión Peroxidasa/genética , Ratones , Ratones Noqueados , MicroARNs/metabolismo , Neuronas/citología , Neuronas/efectos de los fármacos , Estrés Oxidativo , Proteínas Proto-Oncogénicas/metabolismo , Transducción de Señal , Glutatión Peroxidasa GPX1
12.
Cell Rep ; 8(3): 743-53, 2014 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-25066127

RESUMEN

DNA methylation is a central epigenetic modification that is established by de novo DNA methyltransferases. The mechanisms underlying the generation of genomic methylation patterns are still poorly understood. Using mass spectrometry and a phosphospecific Dnmt3a antibody, we demonstrate that CK2 phosphorylates endogenous Dnmt3a at two key residues located near its PWWP domain, thereby downregulating the ability of Dnmt3a to methylate DNA. Genome-wide DNA methylation analysis shows that CK2 primarily modulates CpG methylation of several repeats, most notably of Alu SINEs. This modulation can be directly attributed to CK2-mediated phosphorylation of Dnmt3a. We also find that CK2-mediated phosphorylation is required for localization of Dnmt3a to heterochromatin. By revealing phosphorylation as a mode of regulation of de novo DNA methyltransferase function and by uncovering a mechanism for the regulation of methylation at repetitive elements, our results shed light on the origin of DNA methylation patterns.


Asunto(s)
Quinasa de la Caseína II/metabolismo , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , Procesamiento Proteico-Postraduccional , Células 3T3 , Animales , Línea Celular Tumoral , Islas de CpG , ADN (Citosina-5-)-Metiltransferasas/química , ADN Metiltransferasa 3A , Regulación hacia Abajo , Heterocromatina/metabolismo , Humanos , Ratones , Fosforilación , Estructura Terciaria de Proteína , Elementos de Nucleótido Esparcido Corto
13.
Nucleic Acids Res ; 42(13): 8285-96, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24957603

RESUMEN

DNA methylation is a central epigenetic modification in mammals, with essential roles in development and disease. De novo DNA methyltransferases establish DNA methylation patterns in specific regions within the genome by mechanisms that remain poorly understood. Here we show that protein citrullination by peptidylarginine deiminase 4 (PADI4) affects the function of the DNA methyltransferase DNMT3A. We found that DNMT3A and PADI4 interact, from overexpressed as well as untransfected cells, and associate with each other's enzymatic activity. Both in vitro and in vivo, PADI4 was shown to citrullinate DNMT3A. We identified a sequence upstream of the PWWP domain of DNMT3A as its primary region citrullinated by PADI4. Increasing the PADI4 level caused the DNMT3A protein level to increase as well, provided that the PADI4 was catalytically active, and RNAi targeting PADI4 caused reduced DNMT3A levels. Accordingly, pulse-chase experiments revealed stabilization of the DNMT3A protein by catalytically active PADI4. Citrullination and increased expression of native DNMT3A by PADI4 were confirmed in PADI4-knockout MEFs. Finally, we showed that PADI4 overexpression increases DNA methyltransferase activity in a catalytic-dependent manner and use bisulfite pyrosequencing to demonstrate that PADI4 knockdown causes significant reduction of CpG methylation at the p21 promoter, a known target of DNMT3A and PADI4. Protein citrullination by PADI4 thus emerges as a novel mechanism for controlling a de novo DNA methyltransferase. Our results shed new light on how post-translational modifications might contribute to shaping the genomic CpG methylation landscape.


Asunto(s)
Citrulina/metabolismo , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , Hidrolasas/metabolismo , Animales , Línea Celular , ADN Metiltransferasa 3A , Estabilidad de Enzimas , Humanos , Ratones , Ratones Noqueados , Estructura Terciaria de Proteína , Arginina Deiminasa Proteína-Tipo 4 , Desiminasas de la Arginina Proteica
14.
EMBO J ; 33(11): 1198-211, 2014 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-24825349

RESUMEN

Methylation of the fifth carbon of cytosine was the first epigenetic modification to be discovered in DNA. Recently, three new DNA modifications have come to light: hydroxymethylcytosine, formylcytosine, and carboxylcytosine, all generated by oxidation of methylcytosine by Ten Eleven Translocation (TET) enzymes. These modifications can initiate full DNA demethylation, but they are also likely to participate, like methylcytosine, in epigenetic signalling per se. A scenario is emerging in which coordinated regulation at multiple levels governs the participation of TETs in a wide range of physiological functions, sometimes via a mechanism unrelated to their enzymatic activity. Although still under construction, a sophisticated picture is rapidly forming where, according to the function to be performed, TETs ensure epigenetic marking to create specific landscapes, and whose improper build-up can lead to diseases such as cancer and neurodegenerative disorders.


Asunto(s)
5-Metilcitosina/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica/genética , Neoplasias/genética , Enfermedades Neurodegenerativas/genética , Animales , Citosina/análogos & derivados , Citosina/metabolismo , Metilación de ADN , Proteínas de Unión al ADN/genética , Epigénesis Genética , Humanos , Oxidación-Reducción , Transducción de Señal/genética
15.
EMBO J ; 32(5): 645-55, 2013 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-23353889

RESUMEN

TET proteins convert 5-methylcytosine to 5-hydroxymethylcytosine, an emerging dynamic epigenetic state of DNA that can influence transcription. Evidence has linked TET1 function to epigenetic repression complexes, yet mechanistic information, especially for the TET2 and TET3 proteins, remains limited. Here, we show a direct interaction of TET2 and TET3 with O-GlcNAc transferase (OGT). OGT does not appear to influence hmC activity, rather TET2 and TET3 promote OGT activity. TET2/3-OGT co-localize on chromatin at active promoters enriched for H3K4me3 and reduction of either TET2/3 or OGT activity results in a direct decrease in H3K4me3 and concomitant decreased transcription. Further, we show that Host Cell Factor 1 (HCF1), a component of the H3K4 methyltransferase SET1/COMPASS complex, is a specific GlcNAcylation target of TET2/3-OGT, and modification of HCF1 is important for the integrity of SET1/COMPASS. Additionally, we find both TET proteins and OGT activity promote binding of the SET1/COMPASS H3K4 methyltransferase, SETD1A, to chromatin. Finally, studies in Tet2 knockout mouse bone marrow tissue extend and support the data as decreases are observed of global GlcNAcylation and also of H3K4me3, notably at several key regulators of haematopoiesis. Together, our results unveil a step-wise model, involving TET-OGT interactions, promotion of GlcNAcylation, and influence on H3K4me3 via SET1/COMPASS, highlighting a novel means by which TETs may induce transcriptional activation.


Asunto(s)
Metilación de ADN , Proteínas de Unión al ADN/metabolismo , Dioxigenasas/metabolismo , Regulación de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Transcripción Genética , 5-Metilcitosina/metabolismo , Secuencia de Aminoácidos , Animales , Western Blotting , Proliferación Celular , Células Cultivadas , Inmunoprecipitación de Cromatina , Islas de CpG , Citosina/análogos & derivados , Citosina/metabolismo , Epigénesis Genética , Glicosilación , Histonas/metabolismo , Factor C1 de la Célula Huésped/metabolismo , Humanos , Inmunoprecipitación , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Regiones Promotoras Genéticas/genética
16.
PLoS One ; 7(8): e42704, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22880087

RESUMEN

Promoter methylation profiles are proposed as potential prognosis and/or diagnosis biomarkers in cervical cancer. Up to now, little is known about the promoter methylation profile and expression pattern of stem cell (SC) markers during tumor development. In this study, we were interested to identify SC genes methylation profiles during cervical carcinogenesis. A genome-wide promoter methylation screening revealed a strong hypermethylation of Undifferentiated cell Transcription Factor 1 (UTF1) promoter in cervical cancer in comparison with normal ectocervix. By direct bisulfite pyrosequencing of DNA isolated from liquid-based cytological samples, we showed that UTF1 promoter methylation increases with lesion severity, the highest level of methylation being found in carcinoma. This hypermethylation was associated with increased UTF1 mRNA and protein expression. By using quantitative RT-PCR and Western Blot, we showed that both UTF1 mRNA and protein are present in epithelial cancer cell lines, even in the absence of its two main described regulators Oct4A and Sox2. Moreover, by immunofluorescence, we confirmed the nuclear localisation of UTF1 in cell lines. Surprisingly, direct bisulfite pyrosequencing revealed that the inhibition of DNA methyltransferase by 5-aza-2'-deoxycytidine was associated with decreased UTF1 gene methylation and expression in two cervical cancer cell lines of the four tested. These findings strongly suggest that UTF1 promoter methylation profile might be a useful biomarker for cervical cancer diagnosis and raise the questions of its role during epithelial carcinogenesis and of the mechanisms regulating its expression.


Asunto(s)
Transformación Celular Neoplásica/genética , Metilación de ADN/genética , Regulación Neoplásica de la Expresión Génica , Proteínas Nucleares/genética , Regiones Promotoras Genéticas , Transactivadores/genética , Neoplasias del Cuello Uterino/genética , Azacitidina/farmacología , Carcinoma Epitelial de Ovario , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Transformación Celular Neoplásica/patología , Cuello del Útero/efectos de los fármacos , Cuello del Útero/metabolismo , Cuello del Útero/patología , Análisis por Conglomerados , Técnicas Citológicas , Metilación de ADN/efectos de los fármacos , ADN de Neoplasias/aislamiento & purificación , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Genes Relacionados con las Neoplasias/genética , Humanos , Neoplasias Glandulares y Epiteliales/genética , Neoplasias Glandulares y Epiteliales/patología , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Proteínas Nucleares/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Análisis de Secuencia de ADN , Transactivadores/metabolismo , Neoplasias del Cuello Uterino/patología
17.
EMBO J ; 31(6): 1405-26, 2012 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-22293752

RESUMEN

In addition to genetic predisposition, environmental and lifestyle factors contribute to the pathogenesis of type 2 diabetes (T2D). Epigenetic changes may provide the link for translating environmental exposures into pathological mechanisms. In this study, we performed the first comprehensive DNA methylation profiling in pancreatic islets from T2D and non-diabetic donors. We uncovered 276 CpG loci affiliated to promoters of 254 genes displaying significant differential DNA methylation in diabetic islets. These methylation changes were not present in blood cells from T2D individuals nor were they experimentally induced in non-diabetic islets by exposure to high glucose. For a subgroup of the differentially methylated genes, concordant transcriptional changes were present. Functional annotation of the aberrantly methylated genes and RNAi experiments highlighted pathways implicated in ß-cell survival and function; some are implicated in cellular dysfunction while others facilitate adaptation to stressors. Together, our findings offer new insights into the intricate mechanisms of T2D pathogenesis, underscore the important involvement of epigenetic dysregulation in diabetic islets and may advance our understanding of T2D aetiology.


Asunto(s)
Metilación de ADN , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Islotes Pancreáticos/metabolismo , Anciano , Animales , Línea Celular , Islas de CpG , Dermatoglifia del ADN/métodos , Epigénesis Genética , Sitios Genéticos , Glucosa/metabolismo , Humanos , Regiones Promotoras Genéticas , Ratas , Transcripción Genética
18.
EMBO Mol Med ; 3(12): 726-41, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21910250

RESUMEN

Breast cancer is a molecularly, biologically and clinically heterogeneous group of disorders. Understanding this diversity is essential to improving diagnosis and optimizing treatment. Both genetic and acquired epigenetic abnormalities participate in cancer, but the involvement of the epigenome in breast cancer and its contribution to the complexity of the disease are still poorly understood. By means of DNA methylation profiling of 248 breast tissues, we have highlighted the existence of previously unrecognized breast cancer groups that go beyond the currently known 'expression subtypes'. Interestingly, we showed that DNA methylation profiling can reflect the cell type composition of the tumour microenvironment, and in particular a T lymphocyte infiltration of the tumours. Further, we highlighted a set of immune genes having high prognostic value in specific tumour categories. The immune component uncovered here by DNA methylation profiles provides a new perspective for the importance of the microenvironment in breast cancer, holding implications for better management of breast cancer patients.


Asunto(s)
Neoplasias de la Mama/inmunología , Neoplasias de la Mama/fisiopatología , Metilación de ADN , Epigénesis Genética , Linfocitos T/inmunología , Femenino , Regulación de la Expresión Génica , Humanos
19.
Mol Cell Biol ; 29(18): 4982-93, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19581286

RESUMEN

Histone methylation plays key roles in regulating chromatin structure and function. The recent identification of enzymes that antagonize or remove histone methylation offers new opportunities to appreciate histone methylation plasticity in the regulation of epigenetic pathways. Peptidylarginine deiminase 4 (PADI4; also known as PAD4) was the first enzyme shown to antagonize histone methylation. PADI4 functions as a histone deiminase converting a methylarginine residue to citrulline at specific sites on the tails of histones H3 and H4. This activity is linked to repression of the estrogen-regulated pS2 promoter. Very little is known as to how PADI4 silences gene expression. We show here that PADI4 associates with the histone deacetylase 1 (HDAC1). Kinetic chromatin immunoprecipitation assays revealed that PADI4 and HDAC1, and the corresponding activities, associate cyclically and coordinately with the pS2 promoter during repression phases. Knockdown of HDAC1 led to decreased H3 citrullination, concomitantly with increased histone arginine methylation. In cells with a reduced HDAC1 and a slightly decreased PADI4 level, these effects were more pronounced. Our data thus suggest that PADI4 and HDAC1 collaborate to generate a repressive chromatin environment on the pS2 promoter. These findings further substantiate the "transcriptional clock" concept, highlighting the dynamic connection between deimination and deacetylation of histones.


Asunto(s)
Histonas/metabolismo , Iminas/metabolismo , Acetilación/efectos de los fármacos , Línea Celular , Cromatina/metabolismo , Inmunoprecipitación de Cromatina , Estradiol/farmacología , Histona Desacetilasas/metabolismo , Humanos , Hidrolasas/metabolismo , Regiones Promotoras Genéticas/genética , Unión Proteica/efectos de los fármacos , Arginina Deiminasa Proteína-Tipo 4 , Desiminasas de la Arginina Proteica
20.
Nat Struct Mol Biol ; 15(11): 1176-1183, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18953337

RESUMEN

The pluripotency-determining gene Oct3/4 (also called Pou5f1) undergoes postimplantation silencing in a process mediated by the histone methyltransferase G9a. Microarray analysis now shows that this enzyme may operate as a master regulator that inactivates numerous early-embryonic genes by bringing about heterochromatinization of methylated histone H3K9 and de novo DNA methylation. Genetic studies in differentiating embryonic stem cells demonstrate that a point mutation in the G9a SET domain prevents heterochromatinization but still allows de novo methylation, whereas biochemical and functional studies indicate that G9a itself is capable of bringing about de novo methylation through its ankyrin domain, by recruiting Dnmt3a and Dnmt3b independently of its histone methyltransferase activity. These modifications seem to be programmed for carrying out two separate biological functions: histone methylation blocks target-gene reactivation in the absence of transcriptional repressors, whereas DNA methylation prevents reprogramming to the undifferentiated state.


Asunto(s)
Metilación de ADN , Embrión de Mamíferos/fisiología , Células Madre Embrionarias/fisiología , Silenciador del Gen , Proteína Metiltransferasas/metabolismo , Animales , Línea Celular , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN Metiltransferasa 3A , Células Madre Embrionarias/citología , Epigénesis Genética , Femenino , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina , Histonas/metabolismo , Humanos , Ratones , Ratones Transgénicos , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Estructura Terciaria de Proteína , ADN Metiltransferasa 3B
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...