Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
BMC Infect Dis ; 24(1): 275, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38438955

RESUMEN

Malaria infection is a multifactorial disease partly modulated by host immuno-genetic factors. Recent evidence has demonstrated the importance of Interleukin-17 family proinflammatory cytokines and their genetic variants in host immunity. However, limited knowledge exists about their role in parasitic infections such as malaria. We aimed to investigate IL-17A serum levels in patients with severe and uncomplicated malaria and gene polymorphism's influence on the IL-17A serum levels. In this research, 125 severe (SM) and uncomplicated (UM) malaria patients and 48 free malaria controls were enrolled. IL-17A serum levels were measured with ELISA. PCR and DNA sequencing were used to assess host genetic polymorphisms in IL-17A. We performed a multivariate regression to estimate the impact of human IL-17A variants on IL-17A serum levels and malaria outcomes. Elevated serum IL-17A levels accompanied by increased parasitemia were found in SM patients compared to UM and controls (P < 0.0001). Also, the IL-17A levels were lower in SM patients who were deceased than in those who survived. In addition, the minor allele frequencies (MAF) of two IL-17A polymorphisms (rs3819024 and rs3748067) were more prevalent in SM patients than UM patients, indicating an essential role in SM. Interestingly, the heterozygous rs8193038 AG genotype was significantly associated with higher levels of IL-17A than the homozygous wild type (AA). According to our results, it can be concluded that the IL-17A gene rs8193038 polymorphism significantly affects IL-17A gene expression. Our results fill a gap in the implication of IL-17A gene polymorphisms on the cytokine level in a malaria cohort. IL-17A gene polymorphisms also may influence cytokine production in response to Plasmodium infections and may contribute to the hyperinflammatory responses during severe malaria outcomes.


Asunto(s)
Interleucina-17 , Malaria , Humanos , Interleucina-17/genética , Malaria/genética , Frecuencia de los Genes , Polimorfismo Genético , Citocinas
2.
Sci Data ; 10(1): 433, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37414801

RESUMEN

Peripheral blood mononuclear cells (PBMCs) are blood cells that are a critical part of the immune system used to fight off infection, defending our bodies from harmful pathogens. In biomedical research, PBMCs are commonly used to study global immune response to disease outbreak and progression, pathogen infections, for vaccine development and a multitude of other clinical applications. Over the past few years, the revolution in single-cell RNA sequencing (scRNA-seq) has enabled an unbiased quantification of gene expression in thousands of individual cells, which provides a more efficient tool to decipher the immune system in human diseases. In this work, we generate scRNA-seq data from human PBMCs at high sequencing depth (>100,000 reads/cell) for more than 30,000 cells, in resting, stimulated, fresh and frozen conditions. The data generated can be used for benchmarking batch correction and data integration methods, and to study the effect of freezing-thawing cycles on the quality of immune cell populations and their transcriptomic profiles.


Asunto(s)
Leucocitos Mononucleares , Transcriptoma , Humanos , Congelación , Perfilación de la Expresión Génica , Inmunidad , Leucocitos Mononucleares/metabolismo , Análisis de Secuencia de ARN/métodos , Análisis de Expresión Génica de una Sola Célula
3.
Oncol Rep ; 49(6)2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37114528

RESUMEN

Cervical cancer (CC) is a multifactorial disease of which human papillomavirus (HPV) is the main etiological agent. Despite cervical Pap smear screening and anti­HPV vaccination, CC remains a major public health issue. Identification of specific gene expression signatures in the blood could allow better insight into the immune response of CC and could provide valuable information for the development of novel biomarkers. The present study performed a transcriptomic analysis of peripheral blood mononuclear cells (PBMCs) from Senegalese patients with CC (n=31), low­grade cervical intraepithelial neoplasia (CIN1; n=27) and from healthy control (CTR) subjects (n=29). Individuals in the CIN1 and CTR groups exhibited similar patterns in gene expression. A total of 182 genes were revealed to be differentially expressed in patients with CC compared with individuals in the CIN1 and CTR groups. The IL1R2, IL18R1, MMP9 and FKBP5 genes were the most upregulated, whereas the T­cell receptor α gene TRA was the most downregulated in the CC group compared with in the CIN1 and CTR groups. The pathway enrichment analysis of the differentially expressed genes revealed pathways directly and indirectly linked to inflammation. To the best of our knowledge, the present study is the first large transcriptomic study on CC performed using PBMCs from African women; the results revealed the involvement of genes and pathways related to inflammation, most notably the IL­1 pathway, and the involvement of downregulation of the T­cell receptor α, a key component of the immune response. Several of the stated genes have already been reported in other cancer studies as putative blood biomarkers, thus reinforcing the requirement for deeper investigation. These findings may aid in the development of innovative clinical biomarkers for CC prevention and should be further replicated in other populations.


Asunto(s)
Infecciones por Papillomavirus , Displasia del Cuello del Útero , Neoplasias del Cuello Uterino , Humanos , Femenino , Leucocitos Mononucleares/patología , Infecciones por Papillomavirus/diagnóstico , Neoplasias del Cuello Uterino/patología , Displasia del Cuello del Útero/diagnóstico , Perfilación de la Expresión Génica , Biomarcadores , Papillomaviridae/genética
4.
Sleep Med ; 101: 66-76, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36335893

RESUMEN

Pro-inflammatory cytokines are involved in sleep-wake regulation and are associated with caffeine consumption. This is a cross-sectional study in 1023 active French workers investigating associations between self-reported sleep complaints (>3months) and total sleep time (TST) with nine single-nucleotide-polymorphisms (SNPs) including pro-inflammatory cytokines, according to caffeine consumption. Participants were characterized as low, moderate and high (0-50, 51-300, and >300 mg/day) caffeine consumers. After adjusting the odd ratios (OR) for age, gender, and smoking, the risk of sleep complaints was higher in subjects with genetic mutations in tumor necrosis factor alpha (TNF-α, rs 1800629) (ORa [95%CI] = 1.43 [1.07-1.92] for both G/A and A/A aggregate genotypes) or interleukin-1 beta (IL-1ß, rs1143627) (ORa = 1.61 [1.08-2.44] for homozygous A/A genotype), and the risk was higher when subjects carry the mutations in TNF-α plus IL-1ß regardless of caffeine consumption. When stratified with caffeine consumption, the risk of sleep complaints was higher in TNF-α A allele carriers in high caffeine consumers, and in homozygous A/A genotype of IL-1ß in moderate and high consumers. None of the nine SNPs influence TST, with the exception of the mutation on CYP1A2 and only when stratified with caffeine consumption. Our results also indicated more caffeine side-effects when carrying mutation on IL1ß. This study showed that polymorphisms in TNF-α and/or IL-1ß influenced sleep complaints but did not influence total sleep time. This suggests that management of sleep complaints, which can be addressed by clinical interventions, should consider the influence of the genetic profile of pro-inflammatory cytokines.


Asunto(s)
Cafeína , Citocinas , Humanos , Citocinas/genética , Cafeína/efectos adversos , Factor de Necrosis Tumoral alfa/genética , Autoinforme , Estudios Transversales , Sueño/genética , Polimorfismo de Nucleótido Simple/genética , Genotipo , Predisposición Genética a la Enfermedad
5.
Brain ; 146(1): 149-166, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-35298632

RESUMEN

Huntington's disease is a fatal neurodegenerative disease characterized by striatal neurodegeneration, aggregation of mutant Huntingtin and the presence of reactive astrocytes. Astrocytes are important partners for neurons and engage in a specific reactive response in Huntington's disease that involves morphological, molecular and functional changes. How reactive astrocytes contribute to Huntington's disease is still an open question, especially because their reactive state is poorly reproduced in experimental mouse models. Here, we show that the JAK2-STAT3 pathway, a central cascade controlling astrocyte reactive response, is activated in the putamen of Huntington's disease patients. Selective activation of this cascade in astrocytes through viral gene transfer reduces the number and size of mutant Huntingtin aggregates in neurons and improves neuronal defects in two complementary mouse models of Huntington's disease. It also reduces striatal atrophy and increases glutamate levels, two central clinical outcomes measured by non-invasive magnetic resonance imaging. Moreover, astrocyte-specific transcriptomic analysis shows that activation of the JAK2-STAT3 pathway in astrocytes coordinates a transcriptional program that increases their intrinsic proteolytic capacity, through the lysosomal and ubiquitin-proteasome degradation systems. This pathway also enhances their production and exosomal release of the co-chaperone DNAJB1, which contributes to mutant Huntingtin clearance in neurons. Together, our results show that the JAK2-STAT3 pathway controls a beneficial proteostasis response in reactive astrocytes in Huntington's disease, which involves bi-directional signalling with neurons to reduce mutant Huntingtin aggregation, eventually improving disease outcomes.


Asunto(s)
Enfermedad de Huntington , Enfermedades Neurodegenerativas , Animales , Ratones , Enfermedad de Huntington/genética , Astrocitos/metabolismo , Proteostasis , Enfermedades Neurodegenerativas/patología , Neuronas/metabolismo , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo
6.
PeerJ ; 10: e13487, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35811813

RESUMEN

Background: Host genetic factors contribute to the variability of malaria phenotypes and can allow a better understanding of mechanisms involved in susceptibility and/or resistance to Plasmodium falciparum infection outcomes. Several genetic polymorphisms were reported to be prevalent among populations living in tropical malaria-endemic regions and induce protection against malaria. The present study aims to investigate the prevalence of HBB (chr11) and G6PD (chrX) deficiencies polymorphisms among Senegalese populations and their associations with the risk for severe Plasmodium falciparum malaria occurrence. Methods: We performed a retrospective study with 437 samples, 323 patients recruited in hospitals located in three different endemic areas where malaria episodes were confirmed and 114 free malaria controls. The patients enrolled were classified into two groups: severe malaria (SM) (153 patients) and uncomplicated malaria (UM) (170 patients). PCR and DNA sequencing assessed host genetic polymorphisms in HBB and G6PD. Using a multivariate regression and additive model, estimates of the impact of human HBB and G6PD polymorphisms on malaria incidence were performed. Results: Six frequent SNPs with minor allele frequencies (MAF) > 3% were detected in the HBB gene (rs7946748, rs7480526, rs10768683, rs35209591, HbS (rs334) and rs713040) and two in the G6PD gene (rs762515 and rs1050828 (G6PD-202 G > A). Analysis of selected HbS polymorphism showed significant association with protective effect against severe malaria with a significant p-value = 0.033 (OR 0.38, 95% CI [0.16-0.91]) for SM vs. UM comparison. Surprisingly, our study did not identify the protective effect of variant HbC polymorphism against severe malaria. Finally, we found some of the polymorphisms, like HbS (rs334), are associated with age and biological parameters like eosinophils, basophils, lymphocytes etc. Conclusion: Our data report HBB and G6PD polymorphisms in the Senegalese population and their correlation with severe/mild malaria and outcome. The G6PD and HBB deficiencies are widespread in West Africa endemic malaria regions such as The Gambia, Mali, and Burkina Faso. The study shows the critical role of genetic factors in malaria outcomes. Indeed, genetic markers could be good tools for malaria endemicity prognosis.


Asunto(s)
Malaria Falciparum , Malaria , Humanos , Malaria/complicaciones , Malaria Falciparum/epidemiología , Malí , Polimorfismo de Nucleótido Simple/genética , Prevalencia , Estudios Retrospectivos , Subunidades de Hemoglobina
7.
Life (Basel) ; 11(10)2021 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-34685481

RESUMEN

Several genetic polymorphisms differentiate between healthy individuals who are more cognitively vulnerable or resistant during total sleep deprivation (TSD). Common metrics of cognitive functioning for classifying vulnerable and resilient individuals include the Psychomotor Vigilance Test (PVT), Go/noGo executive inhibition task, and subjective daytime sleepiness. We evaluated the influence of 14 single-nucleotide polymorphisms (SNPs) on cognitive responses during total sleep deprivation (continuous wakefulness for 38 h) in 47 healthy subjects (age 37.0 ± 1.1 years). SNPs selected after a literature review included SNPs of the adenosine-A2A receptor gene (including the most studied rs5751876), pro-inflammatory cytokines (TNF-α, IL1-ß, IL-6), catechol-O-methyl-transferase (COMT), and PER3. Subjects performed a psychomotor vigilance test (PVT) and a Go/noGo-inhibition task, and completed the Karolinska Sleepiness Scale (KSS) every 6 h during TSD. For PVT lapses (reaction time >500 ms), an interaction between SNP and SDT (p < 0.05) was observed for ADORA2A (rs5751862 and rs2236624) and TNF-α (rs1800629). During TSD, carriers of the A allele for ADORA2A (rs5751862) and TNF-α were significantly more impaired for cognitive responses than their respective ancestral G/G genotypes. Carriers of the ancestral G/G genotype of ADORA2A rs5751862 were found to be very similar to the most resilient subjects for PVT lapses and Go/noGo commission errors. Carriers of the ancestral G/G genotype of COMT were close to the most vulnerable subjects. ADORA2A (rs5751862) was significantly associated with COMT (rs4680) (p = 0.001). In conclusion, we show that genetic polymorphisms in ADORA2A (rs5751862), TNF-α (rs1800629), and COMT (rs4680) are involved in creating profiles of high vulnerability or high resilience to sleep deprivation. (NCT03859882).

8.
Eur J Endocrinol ; 184(3): 455-468, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33486469

RESUMEN

OBJECTIVE: DNAJC3, also known as P58IPK, is an Hsp40 family member that interacts with and inhibits PKR-like ER-localized eIF2α kinase (PERK). Dnajc3 deficiency in mice causes pancreatic ß-cell loss and diabetes. Loss-of-function mutations in DNAJC3 cause early-onset diabetes and multisystemic neurodegeneration. The aim of our study was to investigate the genetic cause of early-onset syndromic diabetes in two unrelated patients, and elucidate the mechanisms of ß-cell failure in this syndrome. METHODS: Whole exome sequencing was performed and identified variants were confirmed by Sanger sequencing. DNAJC3 was silenced by RNAi in INS-1E cells, primary rat ß-cells, human islets, and induced pluripotent stem cell-derived ß-cells. ß-cell function and apoptosis were assessed, and potential mediators of apoptosis examined. RESULTS: The two patients presented with juvenile-onset diabetes, short stature, hypothyroidism, neurodegeneration, facial dysmorphism, hypoacusis, microcephaly and skeletal bone deformities. They were heterozygous compound and homozygous for novel loss-of-function mutations in DNAJC3. DNAJC3 silencing did not impair insulin content or secretion. Instead, the knockdown induced rat and human ß-cell apoptosis and further sensitized cells to endoplasmic reticulum stress, triggering mitochondrial apoptosis via the pro-apoptototic Bcl-2 proteins BIM and PUMA. CONCLUSIONS: This report confirms previously described features and expands the clinical spectrum of syndromic DNAJC3 diabetes, one of the five monogenic forms of diabetes pertaining to the PERK pathway of the endoplasmic reticulum stress response. DNAJC3 deficiency may lead to ß-cell loss through BIM- and PUMA-dependent activation of the mitochondrial pathway of apoptosis.


Asunto(s)
Apoptosis/genética , Diabetes Mellitus Tipo 1/genética , Proteínas del Choque Térmico HSP40/genética , Células Secretoras de Insulina/fisiología , Mitocondrias/metabolismo , Adolescente , Adulto , Factores de Edad , Animales , Células Cultivadas , Diabetes Mellitus Tipo 1/metabolismo , Femenino , Humanos , Células Secretoras de Insulina/metabolismo , Mutación con Pérdida de Función , Masculino , Ratones , Mitocondrias/patología , Linaje , Ratas , Síndrome
9.
Int J Immunogenet ; 48(3): 239-249, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33480472

RESUMEN

The etiopathogenesis of rheumatoid arthritis is partially understood; however, it is believed to result from a multi-step process. The immune onset followed by pre-clinical phases will eventually lead to the development of symptomatic disease. We aim at identifying differentially expressed genes in order to highlight pathways involved in the pre-clinical stages of rheumatoid arthritis development. The study population consisted of first-degree relatives of patients with rheumatoid arthritis, known to have an increased risk of developing disease as compared to the general population. Whole transcriptome analysis was performed in four groups: asymptomatic without autoantibodies or symptoms associated with possible rheumatoid arthritis (controls); having either clinically suspect arthralgias, undifferentiated arthritis or autoimmunity associated with RA (pre-clinical stages of RA: Pcs-RA); having subsequently developed classifiable RA (pre-RA); and early untreated rheumatoid arthritis patients (RA). Differentially expressed genes were determined, and enrichment analysis was performed. Functional enrichment analysis revealed 31 pathways significantly enriched in differentially expressed genes for Pcs-RA, pre-RA and RA compared to the controls. Osteoclast pathway is among the seven pathways specific for RA. In Pcs-RA and in pre-RA, several enriched pathways include TP53 gene connections, such as P53 and Wnt signalling pathways. Analysis of whole transcriptome for phenotypes related to rheumatoid arthritis allows highlighting which pathways are requested in the pre-clinical stages of disease development. After validation in replication studies, molecules belonging to some of these pathways could be used to identify new specific biomarkers for individuals with impending rheumatoid arthritis.


Asunto(s)
Artritis Reumatoide/inmunología , Autoanticuerpos/genética , Vías Biosintéticas/genética , Cadenas HLA-DRB1/genética , Adulto , Artritis Reumatoide/genética , Artritis Reumatoide/patología , Autoanticuerpos/inmunología , Vías Biosintéticas/inmunología , Femenino , Perfilación de la Expresión Génica , Cadenas HLA-DRB1/inmunología , Humanos , Masculino , Persona de Mediana Edad , Transcriptoma/genética , Transcriptoma/inmunología
10.
Biotechnol Rep (Amst) ; 26: e00468, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32461926

RESUMEN

Genetic variations contribute to phenotypic individual vulnerabilities to sleep debt, particularly for five single nucleotide polymorphisms (SNPs). Loop-mediated isothermal amplification and melting curve analysis (LAMP-MC) is a recently developed method to characterize SNPs. The aim of present study was to evaluate the LAMP-MC method on blood and buccal cells for detection of five SNPs of interest in healthy humans. We first analyzed signals obtained from LAMP-MC method on 42 samples. Then we compared the results with those of referent TaqMan method. The LAMP-MC method produced specific melting curves for the five SNPs. A high concordance of genotyping results was observed between the two methods for rs5751876_ADORA2A, rs1800629_TNF-α, rs73598374_ADA and rs228697_PER3 in blood and saliva (Cohen's kappa coefficient >0.80). A good agreement ( = 0.61) was observed for rs4680_COMT in blood only. LAMP-MC is a simple and reliable method to study genetic influences on health, sleep debt-related performance impairments and countermeasures.

11.
J Cell Sci ; 132(16)2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31371485

RESUMEN

Expression of hyperactive RAF kinases, such as the oncogenic B-RAF-V600E mutant, in normal human cells triggers a proliferative arrest that blocks tumor formation. We discovered that glucocorticoids delayed the entry into senescence induced by B-RAF-V600E in human fibroblasts, and allowed senescence bypass when the cells were regularly passaged, but that they did not allow proliferation of cells that were already senescent. Transcriptome and siRNA analyses revealed that the EGR1 gene is one target of glucocorticoid action. Transcription of the EGR1 gene is activated by the RAF-MEK-ERK MAPK pathway and acts as a sensor of hyper-mitogenic pathway activity. The EGR1 transcription factor regulates the expression of p15 and p21 (encoded by CDKN2B and CDKN1A, respectively) that are redundantly required for the proliferative arrest of BJ fibroblasts upon expression of B-RAF-V600E. Our results highlight the need to evaluate the action of glucocorticoid on cancer progression in melanoma, thyroid and colon carcinoma in which B-RAF-V600E is a frequent oncogene, and cancers in which evasion from senescence has been shown.


Asunto(s)
Senescencia Celular/efectos de los fármacos , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Fibroblastos/metabolismo , Glucocorticoides/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteínas Proto-Oncogénicas B-raf/metabolismo , Sustitución de Aminoácidos , Línea Celular , Senescencia Celular/genética , Inhibidor p15 de las Quinasas Dependientes de la Ciclina , Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Humanos , Sistema de Señalización de MAP Quinasas/genética , Mutación Missense , Proteínas Proto-Oncogénicas B-raf/genética
12.
Sci Rep ; 9(1): 7550, 2019 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-31101892

RESUMEN

High-throughput RNA-sequencing has become the gold standard method for whole-transcriptome gene expression analysis, and is widely used in numerous applications to study cell and tissue transcriptomes. It is also being increasingly used in a number of clinical applications, including expression profiling for diagnostics and alternative transcript detection. However, despite its many advantages, RNA sequencing can be challenging in some situations, for instance in cases of low input amounts or degraded RNA samples. Several protocols have been proposed to overcome these challenges, and many are available as commercial kits. In this study, we systematically test three recent commercial technologies for RNA-seq library preparation (TruSeq, SMARTer and SMARTer Ultra-Low) on human biological reference materials, using standard (1 mg), low (100 ng and 10 ng) and ultra-low (<1 ng) input amounts, and for mRNA and total RNA, stranded and unstranded. The results are analyzed using read quality and alignment metrics, gene detection and differential gene expression metrics. Overall, we show that the TruSeq kit performs well with an input amount of 100 ng, while the SMARTer kit shows decreased performance for inputs of 100 and 10 ng, and the SMARTer Ultra-Low kit performs relatively well for input amounts <1 ng. All the results are discussed in detail, and we provide guidelines for biologists for the selection of an RNA-seq library preparation kit.


Asunto(s)
Secuenciación del Exoma/métodos , Perfilación de la Expresión Génica/métodos , RNA-Seq/métodos , Transcriptoma/genética , Humanos , ARN Mensajero/genética , Juego de Reactivos para Diagnóstico
13.
Malar J ; 17(1): 61, 2018 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-29402293

RESUMEN

BACKGROUND: Severe forms of malaria (SM) are an outcome of Plasmodium falciparum infection and can cause death especially in children under 4 years of age. RNASE3 (ECP) has been identified as an inhibitor of Plasmodium parasites growth in vitro, and genetic analysis in hospitalized Ghanaian subjects has revealed the RNASE3 +371G/C (rs2073342) polymorphism as a susceptibility factor for cerebral malaria. The +371 C allele results in an Arg/Thr mutation that abolishes the cytotoxic activity of the ECP protein. The present study aims to investigate RNASE3 gene polymorphisms and their putative link to severe malaria in a malaria cohort from Senegal. METHODS/RESULTS: Patients enrolled from hospitals were classified as having either uncomplicated (UM) or severe malaria (SM). The analysis of the RNASE3 gene polymorphisms was performed in 241 subjects: 178 falciparum infected (96 SM, 82 UM) and 63 non-infected subjects as population control group (CTR). Six frequent SNPs (MAF > 3%) were identified, and one SNP was associated with malaria severity by performing a logistic regression analysis SM vs.UM: RNASE3 +499G/C (rs2233860) under age, sex as covariates and HbS/HbC polymorphisms adjustment (p = 0.003, OR 0.43, CI 95% 0.20-0.92). The polymorphisms: +371G/C (rs2073342), +499G/C (rs2233860) and +577A/T (rs8019343) defined a haplotype risk (G-G-T) for malaria severity (Fisher exact test, p = 0.03) (OR 4.1, IC 95% (1.1-14.9). CONCLUSION: In addition to the previously described association of +371G/C polymorphism in Ghanaians cohort, the RNASE3 +499G/C polymorphism was associated with susceptibility to SM in a Senegalese population. The haplotype +371G/+499G/+577T defined by RNASE3 polymorphisms was associated with severity. The genetic association identified independently in the Senegalese population provide additional evidence of a role of RNASE3 (ECP) in malaria severity.


Asunto(s)
Proteína Catiónica del Eosinófilo/genética , Predisposición Genética a la Enfermedad/genética , Malaria Cerebral , Malaria Falciparum , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Estudios de Cohortes , Femenino , Humanos , Malaria Cerebral/epidemiología , Malaria Cerebral/genética , Malaria Falciparum/epidemiología , Malaria Falciparum/genética , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple/genética , Senegal/epidemiología , Adulto Joven
15.
Nat Commun ; 8(1): 2063, 2017 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-29234056

RESUMEN

FOXO3 is consistently annotated as a human longevity gene. However, functional variants and underlying mechanisms for the association remain unknown. Here, we perform resequencing of the FOXO3 locus and single-nucleotide variant (SNV) genotyping in three European populations. We find two FOXO3 SNVs, rs12206094 and rs4946935, to be most significantly associated with longevity and further characterize them functionally. We experimentally validate the in silico predicted allele-dependent binding of transcription factors (CTCF, SRF) to the SNVs. Specifically, in luciferase reporter assays, the longevity alleles of both variants show considerable enhancer activities that are reversed by IGF-1 treatment. An eQTL database search reveals that the alleles are also associated with higher FOXO3 mRNA expression in various human tissues, which is in line with observations in long-lived model organisms. In summary, we present experimental evidence for a functional link between common intronic variants in FOXO3 and human longevity.


Asunto(s)
Proteína Forkhead Box O3/fisiología , Longevidad/genética , Polimorfismo de Nucleótido Simple/genética , Población Blanca/genética , Factores de Edad , Anciano , Anciano de 80 o más Años , Alelos , Factor de Unión a CCCTC/genética , Factor de Unión a CCCTC/metabolismo , Simulación por Computador , Femenino , Proteína Forkhead Box O3/genética , Haplotipos/genética , Humanos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Intrones/genética , Masculino , Persona de Mediana Edad , ARN Mensajero/metabolismo , Factor de Respuesta Sérica/genética , Factor de Respuesta Sérica/metabolismo
16.
Genes (Basel) ; 8(11)2017 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-29112131

RESUMEN

Monogenic forms of diabetes may account for 1-5% of all cases of diabetes, and may occur in the context of syndromic presentations. We investigated the case of a girl affected by insulin-dependent diabetes, diagnosed at 6 years old, associated with congenital cataract. Her consanguineous parents and her four other siblings did not have diabetes or cataract, suggesting a recessive syndrome. Using whole exome sequencing of the affected proband, we identified a heterozygous p.R825Q ABCC8 mutation, located at the exact same amino-acid position as the p.R825W recurring diabetes mutation, hence likely responsible for the diabetes condition, and a homozygous p.G71S mutation in CRYBB1, a gene known to be responsible for congenital cataract. Both mutations were predicted to be damaging and were absent or extremely rare in public databases. Unexpectedly, we found that the mother was also homozygous for the CRYBB1 mutation, and both the mother and one unaffected sibling were heterozygous for the ABCC8 mutation, suggesting incomplete penetrance of both mutations. Incomplete penetrance of ABCC8 mutations is well documented, but this is the first report of an incomplete penetrance of a CRYBB1 mutation, manifesting between susceptible subjects (unaffected mother vs. affected child) and to some extent within the patient herself, who had distinct cataract severities in both eyes. Our finding illustrates the importance of family studies to unmask the role of confounding factors such as double-gene mutations and incomplete penetrance that may mimic monogenic syndromes including in the case of strongly evocative family structure with consanguinity.

17.
Nat Genet ; 49(9): 1373-1384, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28714976

RESUMEN

We identified rare coding variants associated with Alzheimer's disease in a three-stage case-control study of 85,133 subjects. In stage 1, we genotyped 34,174 samples using a whole-exome microarray. In stage 2, we tested associated variants (P < 1 × 10-4) in 35,962 independent samples using de novo genotyping and imputed genotypes. In stage 3, we used an additional 14,997 samples to test the most significant stage 2 associations (P < 5 × 10-8) using imputed genotypes. We observed three new genome-wide significant nonsynonymous variants associated with Alzheimer's disease: a protective variant in PLCG2 (rs72824905: p.Pro522Arg, P = 5.38 × 10-10, odds ratio (OR) = 0.68, minor allele frequency (MAF)cases = 0.0059, MAFcontrols = 0.0093), a risk variant in ABI3 (rs616338: p.Ser209Phe, P = 4.56 × 10-10, OR = 1.43, MAFcases = 0.011, MAFcontrols = 0.008), and a new genome-wide significant variant in TREM2 (rs143332484: p.Arg62His, P = 1.55 × 10-14, OR = 1.67, MAFcases = 0.0143, MAFcontrols = 0.0089), a known susceptibility gene for Alzheimer's disease. These protein-altering changes are in genes highly expressed in microglia and highlight an immune-related protein-protein interaction network enriched for previously identified risk genes in Alzheimer's disease. These genetic findings provide additional evidence that the microglia-mediated innate immune response contributes directly to the development of Alzheimer's disease.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Enfermedad de Alzheimer/genética , Inmunidad Innata/genética , Glicoproteínas de Membrana/genética , Microglía/metabolismo , Fosfolipasa C gamma/genética , Polimorfismo de Nucleótido Simple , Receptores Inmunológicos/genética , Secuencia de Aminoácidos , Estudios de Casos y Controles , Exoma/genética , Perfilación de la Expresión Génica , Frecuencia de los Genes , Predisposición Genética a la Enfermedad/genética , Genotipo , Humanos , Desequilibrio de Ligamiento , Oportunidad Relativa , Mapas de Interacción de Proteínas/genética , Homología de Secuencia de Aminoácido
18.
Nat Commun ; 8: 14995, 2017 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-28489069

RESUMEN

The senescence of mammalian cells is characterized by a proliferative arrest in response to stress and the expression of an inflammatory phenotype. Here we show that histone H2A.J, a poorly studied H2A variant found only in mammals, accumulates in human fibroblasts in senescence with persistent DNA damage. H2A.J also accumulates in mice with aging in a tissue-specific manner and in human skin. Knock-down of H2A.J inhibits the expression of inflammatory genes that contribute to the senescent-associated secretory phenotype (SASP), and over expression of H2A.J increases the expression of some of these genes in proliferating cells. H2A.J accumulation may thus promote the signalling of senescent cells to the immune system, and it may contribute to chronic inflammation and the development of aging-associated diseases.


Asunto(s)
Senescencia Celular/genética , Citocinas/genética , Histonas/genética , Factores de Edad , Animales , Línea Celular , Proliferación Celular/genética , Citocinas/metabolismo , Daño del ADN , Fibroblastos/citología , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Variación Genética , Histonas/metabolismo , Humanos , Mediadores de Inflamación/metabolismo , Ratones Endogámicos C57BL , Piel/metabolismo
19.
Aging Cell ; 15(3): 585-8, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27004735

RESUMEN

Human longevity is characterized by a remarkable lack of confirmed genetic associations. Here, we report on the identification of a novel locus for longevity in the RAD50/IL13 region on chromosome 5q31.1 using a combined European sample of 3208 long-lived individuals (LLI) and 8919 younger controls. First, we performed a large-scale association study on 1458 German LLI (mean age 99.0 years) and 6368 controls (mean age 57.2 years) by targeting known immune-associated loci covered by the Immunochip. The analysis of 142 136 autosomal single nucleotide polymorphisms (SNPs) revealed an Immunochip-wide significant signal (PI mmunochip  = 7.01 × 10(-9) ) for the SNP rs2075650 in the TOMM40/APOE region, which has been previously described in the context of human longevity. To identify novel susceptibility loci, we selected 15 markers with PI mmunochip  < 5 × 10(-4) for replication in two samples from France (1257 LLI, mean age 102.4 years; 1811 controls, mean age 49.1 years) and Denmark (493 LLI, mean age 96.2 years; 740 controls, mean age 63.1 years). The association at SNP rs2706372 replicated in the French study collection and showed a similar trend in the Danish participants and was also significant in a meta-analysis of the combined French and Danish data after adjusting for multiple testing. In a meta-analysis of all three samples, rs2706372 reached a P-value of PI mmunochip+Repl  = 5.42 × 10(-7) (OR = 1.20; 95% CI = 1.12-1.28). SNP rs2706372 is located in the extended RAD50/IL13 region. RAD50 seems a plausible longevity candidate due to its involvement in DNA repair and inflammation. Further studies are needed to identify the functional variant(s) that predispose(s) to a long and healthy life.


Asunto(s)
Enzimas Reparadoras del ADN/genética , Proteínas de Unión al ADN/genética , Estudio de Asociación del Genoma Completo , Interleucina-13/genética , Longevidad/genética , Longevidad/inmunología , Análisis de Secuencia por Matrices de Oligonucleótidos , Ácido Anhídrido Hidrolasas , Cromosomas Humanos Par 5/genética , Sitios Genéticos , Humanos
20.
Diabetes ; 64(11): 3951-62, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26159176

RESUMEN

Dysregulated endoplasmic reticulum stress and phosphorylation of eukaryotic translation initiation factor 2α (eIF2α) are associated with pancreatic ß-cell failure and diabetes. Here, we report the first homozygous mutation in the PPP1R15B gene (also known as constitutive repressor of eIF2α phosphorylation [CReP]) encoding the regulatory subunit of an eIF2α-specific phosphatase in two siblings affected by a novel syndrome of diabetes of youth with short stature, intellectual disability, and microcephaly. The R658C mutation in PPP1R15B affects a conserved amino acid within the domain important for protein phosphatase 1 (PP1) binding. The R658C mutation decreases PP1 binding and eIF2α dephosphorylation and results in ß-cell apoptosis. Our findings support the concept that dysregulated eIF2α phosphorylation, whether decreased by mutation of the kinase (EIF2AK3) in Wolcott-Rallison syndrome or increased by mutation of the phosphatase (PPP1R15B), is deleterious to ß-cells and other secretory tissues, resulting in diabetes associated with multisystem abnormalities.


Asunto(s)
Diabetes Mellitus/genética , Trastornos del Crecimiento/genética , Microcefalia/genética , Mutación Missense , Proteína Fosfatasa 1/genética , Adolescente , Adulto , Femenino , Humanos , Masculino , Síndrome
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...