Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
AoB Plants ; 15(5): plad059, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37899977

RESUMEN

Due to global climate cooling and aridification since the Paleogene, members of the Neogene flora were extirpated from the Northern Hemisphere or were confined to a few refugial areas. For some species, the final reduction/extinction came in the Pleistocene, but some others have survived climatic transformations up to the present. This has occurred in Castanea sativa, a species of high commercial value in Europe and a significant component of the Caucasian forests' biodiversity. In contrast to the European range, neither the historical biogeography nor the population genetic structure of the species in its isolated Caucasian range has been clarified. Here, based on a survey of 21 natural populations from the Caucasus and a single one from Europe, we provide a likely biogeographic reconstruction and genetic diversity details. By applying Bayesian inference, species distribution modelling and fossil pollen data, we estimated (i) the time of the Caucasian-European divergence during the Middle Pleistocene, (ii) the time of divergence among Caucasian lineages and (iii) outlined the glacial refugia for species. The climate changes related to the Early-Middle Pleistocene Transition are proposed as the major drivers of the intraspecific divergence and European-Caucasian disjunction for the species, while the impact of the last glacial cycle was of marginal importance.

2.
Ecol Evol ; 13(5): e10068, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37214605

RESUMEN

The climate drives species distribution and genetic diversity; the latter defines the adaptability of populations and species. The ongoing climate crisis induces tree decline in many regions, compromising the mitigation potential of forests. Scientific-based strategies for prioritizing forest tree populations are critical to managing the impact of climate change. Identifying future climate refugia, which are locations naturally buffering the negative impact of climate change, may facilitate local conservation. In this work, we conducted the populations' prioritization for Castanea sativa (sweet chestnut), a Neogene relict growing in the Caucasus global biodiversity hotspot. We generated genetic and ecological metrics for 21 sites in Georgia and Azerbaijan, which cover the natural range of sweet chestnut across the region. We demonstrated that climate primarily drives the pattern of genetic diversity in C. sativa, proved with a significant isolation-by-environment model. In future, climate change may significantly reorganize the species' genetic diversity, inducing even some genetic loss, especially in the very distinct eastern fringe of the species range in Azerbaijan. Based on our combined approach, we mapped populations suitable for ex situ and in situ conservation, accounting for genetic variability and the location of future climate refugia.

3.
Ecol Evol ; 12(9): e9320, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36188519

RESUMEN

Predicting species-level effects of climatic changes requires unraveling the factors affecting the spatial genetic composition. However, disentangling the relative contribution of historical and contemporary drivers is challenging. By applying landscape genetics and species distribution modeling, we investigated processes that shaped the neutral genetic structure of Oriental beech (Fagus orientalis), aiming to assess the potential risks involved due to possible future distribution changes in the species. Using nuclear microsatellites, we analyze 32 natural populations from the Georgia and Azerbaijan (South Caucasus). We found that the species colonization history is the most important driver of the genetic pattern. The detected west-east gradient of genetic differentiation corresponds strictly to the Colchis and Hyrcanian glacial refugia. A significant signal of associations to environmental variables suggests that the distinct genetic composition of the Azerbaijan and Hyrcanian stands might also be structured by the local climate. Oriental beech retains an overall high diversity; however, in the context of projected habitat loss, its genetic resources might be greatly impoverished. The most affected are the Azerbaijan and Hyrcanian populations, for which the detected genetic impoverishment may enhance their vulnerability to environmental change. Given the adaptive potential of range-edge populations, the loss of these populations may ultimately affect the specie's adaptation, and thus the stability and resilience of forest ecosystems in the Caucasus ecoregion. Our study is the first approximation of the potential risks involved, inducing far-reaching conclusions about the need of maintaining the genetic resources of Oriental beech for a species' capacity to cope with environmental change.

4.
Plant Cell Environ ; 45(1): 121-132, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34748220

RESUMEN

The commonly observed negative relationship between stomatal density (SD) and atmospheric CO2 has led to SD being proposed as an indicator of atmospheric CO2 concentration. The use of SD as a proxy for CO2 , however, has been hampered by an insufficient understanding of the intraspecific variation of this trait. We hypothesized that SD in Pinus sylvestris, a widely distributed conifer, varies geographically and that this variation is determined by major climatic variables. By sampling needles from naturally growing trees along a latitudinal range of 32.25°, equivalent to 13.7°C gradient of mean annual temperature (MAT) across Europe, we found that SD decreased from the warmest southern sites to the coldest sites in the north at a rate of 4 stomata per mm2 for each 1°C, with MAT explaining 44% of the variation. Additionally, samples from a provenance trial exhibited a positive relationship between SD and the MAT of the original localities, suggesting that high SD is an adaptation to warm temperature. Our study revealed one of the strongest intraspecific relationships between SD and climate in any woody species, supporting the utility of SD as a temperature, rather than direct CO2 , proxy. In addition, our results predict the response of SD to climate warming.


Asunto(s)
Dióxido de Carbono , Pinus sylvestris/fisiología , Estomas de Plantas/fisiología , Adaptación Fisiológica , Clima , Europa (Continente) , Pinus sylvestris/anatomía & histología , Estomas de Plantas/anatomía & histología , Temperatura
5.
PhytoKeys ; 185: 27-41, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34819779

RESUMEN

Based on field research in south-central Poland, supplemented with a review of herbarium materials, we identified a stable bramble biotype with a range large enough (190 km distance between the outermost stands) to be described as a new regional agamic species, Rubuskaznowskii sp.nov. It belongs to the series Subthyrsoidei(sect. Corylifolii). Although R.kaznowskii has a unique combination of features, it can be potentially mistaken for R.gothicus. It differs from the latter species in many aspects, including: pruinose primocanes, denser indumentum of the abaxial leaf surface, and more curved prickles on the petiole. R.kaznowskii has mainly been observed on rusty soils, in habitats of mixed coniferous and mixed broadleaf forests, usually in sunny places, along forest margins and roads, in clearings and roadside thickets.

6.
Mol Ecol Resour ; 21(3): 781-800, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33290637

RESUMEN

Individual differences in male reproductive success drive genetic drift and natural selection, altering genetic variation and phenotypic trait distributions in future generations. Therefore, identifying the determinants of reproductive success is important for understanding the ecology and evolution of plants. Here, based on the spatially explicit mating model (the neighborhood model), we develop a hierarchical probability model that links co-dominant genotypes of offspring and candidate parents with phenotypic determinants of male reproductive success. The model accounts for pollen dispersal, genotyping errors as well as individual variation in selfing, pollen immigration, and differentiation of immigrant pollen pools. Unlike the classic neighborhood model approach, our approach is specially designed to account for excessive variation (overdispersion) in male fecundity. We implemented a Bayesian estimation method (the Windows computer program available at: https://www.ukw.edu.pl/pracownicy/plik/igor_chybicki/1806/) that, among others, allows for selecting phenotypic variables important for male fecundity and assessing the fraction of variance in fecundity (R2 ) explained by selected variables. Simulations showed that our method outperforms both the classic neighborhood model and the two-step approach, where fecundities and the effects of phenotypic variables are estimated separately. The analysis of two data examples showed that in wind-pollinated trees, male fecundity depends on both the amount of produced pollen and the ability to pollen spread. However, despite that the tree size was positively correlated with male fecundity, it explained only a fraction of the total variance in fecundity, indicating the presence of additional factors. Finally, case studies highlighted the importance of accounting for pollen dispersal in the estimation of fecundity determinants.


Asunto(s)
Plantas , Polen , Teorema de Bayes , Fertilidad , Genotipo , Repeticiones de Microsatélite , Modelos Genéticos , Fenotipo , Plantas/genética , Polen/genética , Polinización , Reproducción , Árboles
7.
Ecol Lett ; 23(12): 1739-1746, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32856759

RESUMEN

Climate change has likely altered high-latitude forests globally, but direct evidence remains rare. Here we show that throughout a ≈1000-km transect in Scots pine (Pinus sylvestris L.) forests in Sweden, mature trees in ≈2015 had longer needles with shorter lifetimes than did trees in ≈1915. These century-scale shifts in needle traits were detected by sampling needles at 74 sites from 2012 to 2017 along the same transect where needle traits had been assessed at 57 sites in 1914-1915. Climate warming of ≈1 °C all along the transect in the past century has driven this temporal shift in foliage traits known to be physiologically critical to growth and carbon cycling processes. These century-scale changes in Scandinavian Scots pine forests represent a fingerprint of climate change on a fundamental biological element, the leaf, with repercussions for productivity and sensitivity to future climate, which are likely to be mirrored by similar changes for evergreen conifers across the boreal biome.


Asunto(s)
Cambio Climático , Pinus , Bosques , Suecia , Árboles
8.
Sci Rep ; 10(1): 4810, 2020 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-32179791

RESUMEN

Juniperus thurifera is a key element of the forest communities in arid and semi-arid areas of the western Mediterranean. Previous genetic and morphological investigations suggested that Algerian populations are genetically more similar to European than to Moroccan populations and advocated their recognition at the variety rank. We aimed to investigate the spatial genetic structure in J. thurifera to verify the distinct character of the Algerian population in terms of the genetic breaks reported among several North African taxa. We also modelled species distributions since the Eemian to recognise the impact of past climatic changes on the current pattern of diversity and predict possible changes in species distribution in the future. Species-specific microsatellites were used in the analysis of 11 populations from Algeria, Morocco and Europe. We revealed the significant genetic distinctiveness of the Algerian populations from the Moroccan and European stands that may have important taxonomic and conservation implications. The diversity pattern revealed for J. thurifera reflects the east-west genetic splits reported among some North African plant and animal taxa and suggests an impact of shared historical processes. Additionally, modelling of the distribution allowed us to identify possible glacial refugia and their impact on the modern pattern of differentiation in J. thurifera. Reduction of species occurrence, especially in the European domain, is likely according to the future projections of the species distribution.


Asunto(s)
Variación Genética , Juniperus/genética , África del Norte , Argelia , Repeticiones de Microsatélite , Marruecos , Especificidad de la Especie
9.
PLoS One ; 14(12): e0226225, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31826015

RESUMEN

Horse-chestnut (Aesculus hippocastanum L.) is an endemic and relict species from the Mediterranean biodiversity hotspot and a popular ornamental tree. Knowledge about the evolutionary history of this species remains scarce. Here, we ask what historical and ecological factors shaped the pattern of genetic diversity and differentiation of this species. We genotyped 717 individuals from nine natural populations using microsatellite markers. The influence of distance, topography and habitat variables on spatial genetic structure was tested within the approaches of isolation-by-distance and isolation-by-ecology. Species niche modeling was used to project the species theoretical range through time and space. The species showed high genetic diversity and moderate differentiation for which topography, progressive range contraction through the species' history and long-term persistence in stable climatic refugia are likely responsible. A strong geographic component was revealed among five genetic clusters that are connected with very limited gene flow. The environmental variables were a significant factor in the spatial genetic structure. Modeling results indicated that future reduction of the species range may affect its survival. The possible impact of climate changes and high need of in situ conservation are discussed.


Asunto(s)
Aesculus/genética , Variación Genética , Aesculus/fisiología , Teorema de Bayes , Cambio Climático , ADN de Plantas/genética , ADN de Plantas/aislamiento & purificación , ADN de Plantas/metabolismo , Ecosistema , Flujo Génico , Genética de Población , Genotipo , Grecia , Repeticiones de Microsatélite , Filogeografía , Refugio de Fauna
10.
J Plant Res ; 128(5): 731-45, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26153428

RESUMEN

Random genetic drift, natural selection and restricted gene dispersal are basic factors of the spatial genetic structure (SGS) in plant populations. Clonal reproduction has a profound effect on population dynamics and genetic structure and thus emerges as a potential factor in contributing to and modelling SGS. In order to assess the impact of clonality on SGS we studied clonal structure and SGS in the population of Populus alba. Six hundred and seventy-two individuals were mapped and genotyped with 16 nuclear microsatellite markers. To answer the more general question regarding the relationship between SGS and clonality we used Sp statistics, which allows for comparisons of the extent of SGS among different studies, and the comparison of published data on SGS in clonal and non-clonal tree species. Sp statistic was extracted for 14 clonal and 27 non-clonal species belonging to 7 and 18 botanical families, respectively. Results of genetic investigations conducted in the population of P. alba showed over-domination of clonal reproduction, which resulted in very low clonal diversity (R = 0.12). Significant SGS was found at both ramet (Sp = 0.095) and genet level (Sp = 0.05) and clonal reproduction was indicated as an important but not sole driving factor of SGS. Within-population structure, probably due to family structure also contributed to high SGS. High mean dominance index (D = 0.82) indicated low intermingling among genets. Literature survey revealed that clonal tree species significantly differ from non-clonal species with respect to SGS, having 2.8-fold higher SGS. This led us to conclude that clonality is a life-history trait that can have deep impact on processes acting in populations of clonal tree species leading to significant SGS.


Asunto(s)
Variación Genética , Repeticiones de Microsatélite , Populus/genética , Árboles/genética , Polonia , Reproducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...