Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Glycobiology ; 34(5)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38489772

RESUMEN

Polysialic acid (polySia) is a linear polymer of α2,8-linked sialic acid residues that is of fundamental biological interest due to its pivotal roles in the regulation of the nervous, immune, and reproductive systems in healthy human adults. PolySia is also dysregulated in several chronic diseases, including cancers and mental health disorders. However, the mechanisms underpinning polySia biology in health and disease remain largely unknown. The polySia-specific hydrolase, endoneuraminidase NF (EndoN), and the catalytically inactive polySia lectin EndoNDM, have been extensively used for studying polySia. However, EndoN is heat stable and remains associated with cells after washing. When studying polySia in systems with multiple polysialylated species, the residual EndoN that cannot be removed confounds data interpretation. We developed a strategy for site-specific immobilization of EndoN on streptavidin-coated magnetic beads. We showed that immobilizing EndoN allows for effective removal of the enzyme from samples, while retaining hydrolase activity. We used the same strategy to immobilize the polySia lectin EndoNDM, which enabled the enrichment of polysialylated proteins from complex mixtures such as serum for their identification via mass spectrometry. We used this methodology to identify a novel polysialylated protein, QSOX2, which is secreted from the breast cancer cell line MCF-7. This method of site-specific immobilization can be utilized for other enzymes and lectins to yield insight into glycobiology.


Asunto(s)
Neuraminidasa , Ácidos Siálicos , Adulto , Humanos , Ácidos Siálicos/química , Neuraminidasa/metabolismo , Lectinas , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro
2.
J Autoimmun ; 140: 103110, 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37742510

RESUMEN

OBJECTIVE: Systemic sclerosis (SSc) is a rare but deadly disease characterized by autoimmunity, vasculopathy, and fibrosis. Fibrotic complications associated with SSc correlate with severe morbidity and mortality. Previous studies in SSc have identified fibroblasts as the primary drivers of fibrosis; however, the mechanism(s) promoting this are not well understood. Aberrant glycosylation, particularly polysialylation (polySia), has been described as a prominent feature of aggressive cancers. Inspired by this observation, we aimed to determine if polySia is dysregulated in various forms of SSc. METHODS: All patients with SSc met the 2013 ACR/EULAR. Patients were sub-classified into limited cutaneous (lSSc, N = 5 or 46 patients for polySia quantification in the dermis or serum; respectively), diffuse cutaneous (dSSc, N = 11 or 18 patients for polySia quantification in the dermis or serum; respectively), or patients with dSSc treated with an autologous stem cell transplantation (post-ASCT, N = 4 patients for quantification in the dermis). Dermal polySia levels were measured via immunofluorescence microscopy in 10 µm dermal sections, quantified in each group (healthy volunteers (HC), lSSc, dSSc, and post-ASCT) and correlated with skin fibrosis (via the modified Rodnan skin score (mRSS)). Similarly, serum polySia was quantified in each group, and correlated with the mRSS. RESULTS: Dermal polySia levels were highest in patients with dSSc (compared to HC < 0.001), and correlated with the degree of fibrosis in all of the groups (P = 0.008). Serum polySia was higher in all SSc groups (p < 0.001) and correlated with the severity of mRSS (p < 0.0001). CONCLUSION: Polysia is more abundant in the skin and sera from patients with SSc and correlates with the degree of skin fibrosis. The aberrant expression of polySia highlights its potential use as a biomarker in patients with progressive forms of SSc. Dysregulated polySia levels in SSc further emphasizes the cancer-like phenotype present in SSc, which may promote fibrosis and immune dysregulation.

3.
Glycobiology ; 33(5): 369-383, 2023 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-37021826

RESUMEN

Glycobiology as a field holds enormous potential for understanding human health and disease. However, few glycobiology studies adequately address the issue of sex differences in biology, which severely limits the conclusions that can be drawn. Numerous CAZymes, lectins, and other carbohydrate-associated molecules have the potential to be differentially expressed and regulated with sex, leading to differences in O-GlcNAc, N-glycan branching, fucosylation, sialylation, and proteoglycan structure, among others. Expression of proteins involved in glycosylation is influenced through hormones, miRNA, and gene dosage effects. In this review, we discuss the benefits of incorporating sex-based analysis in glycobiology research and the potential drivers of sex differences. We highlight examples of where incorporation of sex-based analysis has led to insights into glycobiology. Finally, we offer suggestions for how to proceed moving forward, even if the experiments are already complete. Properly incorporating sex based analyses into projects will substantially improve the accuracy and reproducibility of studies as well as accelerate the rate of discovery in the glycosciences.


Asunto(s)
Carbohidratos , Polisacáridos , Femenino , Humanos , Masculino , Reproducibilidad de los Resultados , Glicosilación , Polisacáridos/química , Lectinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...