Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Environ Mol Mutagen ; 65(1-2): 4-24, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38545858

RESUMEN

ToxTracker is a mammalian cell reporter assay that predicts the genotoxic properties of compounds with high accuracy. By evaluating induction of various reporter genes that play a key role in relevant cellular pathways, it provides insight into chemical mode-of-action (MoA), thereby supporting discrimination of direct-acting genotoxicants and cytotoxic chemicals. A comprehensive interlaboratory validation trial was conducted, in which the principles outlined in OECD Guidance Document 34 were followed, with the primary objectives of establishing transferability and reproducibility of the assay and confirming the ability of ToxTracker to correctly classify genotoxic and non-genotoxic compounds. Reproducibility of the assay to predict genotoxic MoA was confirmed across participating laboratories and data were evaluated in terms of concordance with in vivo genotoxicity outcomes. Seven laboratories tested a total of 64 genotoxic and non-genotoxic chemicals that together cover a broad chemical space. The within-laboratory reproducibility (WLR) was up to 98% (73%-98% across participants) and the overall between-laboratory reproducibility (BLR) was 83%. This trial confirmed the accuracy of ToxTracker to predict in vivo genotoxicants with a sensitivity of 84.4% and a specificity of 91.2%. We concluded that ToxTracker is a robust in vitro assay for the accurate prediction of in vivo genotoxicity. Considering ToxTracker's robust standalone accuracy and that it can provide important information on the MoA of chemicals, it is seen as a valuable addition to the regulatory in vitro genotoxicity battery that may even have the potential to replace certain currently used in vitro battery assays.


Asunto(s)
Daño del ADN , Mamíferos , Animales , Humanos , Pruebas de Mutagenicidad , Reproducibilidad de los Resultados , Genes Reporteros
2.
Environ Mol Mutagen ; 64(2): 132-143, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36645179

RESUMEN

ToxTracker is an in vitro mammalian stem cell-based reporter assay that detects activation of specific cellular signaling pathways (DNA damage, oxidative stress, and/or protein damage) upon chemical exposure using flow cytometry. Here we used quantitative methods to empirically analyze historical control data, and dose-response data across a wide range of reference chemicals. First, we analyzed historical control data to define a fold-change threshold for identification of a significant positive response. Next, we used the benchmark dose (BMD) combined-covariate approach for potency ranking of a set of more than 120 compounds; the BMD values were used for comparative identification of the most potent inducers of each reporter. Lastly, we used principal component analysis (PCA) to investigate functional and statistical relationships between the ToxTracker reporters. The PCA results, based on the BMD results for all substances, indicated that the DNA damage (Rtkn, Bscl2) and p53 (Btg2) reporters are functionally complementary and indicative of genotoxic stress. The oxidative stress (Srxn1 and Blvrb) and protein stress (Ddit3) reporters are independent indicators of cellular stress, and essential for toxicological profiling using the ToxTracker assay. Overall, dose-response modeling of multivariate ToxTracker data can be used for potency ranking and mode-of-action determination. In the future, IVIVE (in vitro to in vivo extrapolation) methods can be employed to determine in vivo AED (administered equivalent dose) values that can in turn be used for human health risk assessment.


Asunto(s)
Daño del ADN , Estrés Oxidativo , Pruebas de Toxicidad , Animales , Humanos , Mamíferos/genética , Pruebas de Mutagenicidad/métodos , Medición de Riesgo , Proteínas Supresoras de Tumor/genética , Pruebas de Toxicidad/métodos , Pruebas de Toxicidad/estadística & datos numéricos
3.
Toxicol Lett ; 362: 50-58, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35569722

RESUMEN

Nucleoside analogues have long been designed and tested in cancer treatment and against viral infections. However, several early compounds were shown to have mutagenic properties as a consequence of their mode-of-action. This limited their use, and several have been discontinued for lengthy treatments or altogether. Nonetheless, nucleoside analogues remain an attractive modality for virally driven diseases, of which many still are without proper treatment options. To quantitatively assess the genotoxic mode-of-action of a panel of nucleoside analogues, we applied the ToxTracker® reporter assay. Many of the early nucleoside analogues showed a genotoxic response. The more recently developed nucleoside analogues, Remdesivir and Molnupiravir that are currently being repurposed for Covid-19 treatment, had a different profile in ToxTracker and did not induce the genotoxicity reporters. Our analyses support the metabolite GS-441524 over the parent analogue Remdesivir. In contrast, Molnupiravir was devoid of clear cellular toxicity while its active metabolite (EIDD-1931) was cytotoxic and induced several biomarkers. Nucleoside analogues continue to be attractive treatment options upon viral infections. ToxTracker readily distinguished between the genotoxic analogues and those with different profiles and provides a basis for clustering and potency ranking, offering a comprehensive tool to assess the toxicity of nucleoside analogues.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Mutágenos , Daño del ADN , Humanos , Mutágenos/toxicidad , Nucleósidos/toxicidad
4.
Toxicol Sci ; 186(2): 288-297, 2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-35094094

RESUMEN

Aneuploidy is characterized by the presence of an abnormal number of chromosomes and is a common hallmark of cancer. However, exposure to aneugenic compounds does not necessarily lead to cancer. Aneugenic compounds are mainly identified using the in vitro micronucleus assay but this assay cannot standardly discriminate between aneugens and clastogens and cannot be used to identify the exact mode-of-action (MOA) of aneugens; tubulin stabilization, tubulin destabilization, or inhibition of mitotic kinases. To improve the classification of aneugenic substances and determine their MOA, we developed and validated the TubulinTracker assay that uses a green fluorescent protein-tagged tubulin reporter cell line to study microtubule stability using flow cytometry. Combining the assay with a DNA stain also enables cell cycle analysis. Substances whose exposure resulted in an accumulation of cells in G2/M phase, combined with increased or decreased tubulin levels, were classified as tubulin poisons. All known tubulin poisons included were classified correctly. Moreover, we correctly classified compounds, including aneugens that did not affect microtubule levels. However, the MOA of aneugens not affecting tubulin stability, such as Aurora kinase inhibitors, could not be identified. Here, we show that the TubulinTracker assay can be used to classify microtubule stabilizing and destabilizing compounds in living cells. This insight into the MOA of aneugenic agents is important, eg, to support a weight-of-evidence approach for risk assessment, and the classification as an aneugen as opposed to a clastogen or mutagen, has a big impact on the assessment.


Asunto(s)
Aneugénicos , Venenos , Aneugénicos/toxicidad , División Celular , Pruebas de Micronúcleos/métodos , Microtúbulos , Mutágenos/farmacología , Venenos/farmacología , Tubulina (Proteína)
5.
Regul Toxicol Pharmacol ; 129: 105120, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35038485

RESUMEN

Cobalt metal and cobalt sulfate are carcinogenic in rodents following inhalation exposure. The pre-carcinogenic effects associated with exposure to these cobalt substances include oxidative stress and genotoxicity. Some, but not all, cobalt substances induce in vitro clastogenicity or an increase in micronuclei. As a result, these substances are classified genotoxic carcinogens, having major impacts on their risk assessment, e.g. assumption of a non-thresholded dose response. Here, we investigated the potential of nine cobalt substances to cause genotoxicity and oxidative stress using the ToxTracker assay, with an extension to measure biomarkers of hypoxia. None of the nine tested substances activated the DNA damage markers in ToxTracker, and five substances activated the oxidative stress response reporters. The same five substances also activated the expression of several hypoxia target genes. Consistent with the lower tier of testing found in the preceding paper of this series, these compounds can be grouped based on their ability to release bioavailable cobalt ion and to trigger subsequent key events.


Asunto(s)
Carcinógenos/química , Carcinógenos/farmacología , Cobalto/química , Cobalto/farmacología , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Administración por Inhalación , Línea Celular , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Genotipo , Pruebas de Mutagenicidad , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/genética , Tamaño de la Partícula
6.
Sci Rep ; 11(1): 21846, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34750422

RESUMEN

Welding fumes induce lung toxicity and are carcinogenic to humans but the molecular mechanisms have yet to be clarified. The aim of this study was to evaluate the toxicity of stainless and mild steel particles generated via gas-metal arc welding using primary human small airway epithelial cells (hSAEC) and ToxTracker reporter murine stem cells, which track activation of six cancer-related pathways. Metal content (Fe, Mn, Ni, Cr) of the particles was relatively homogenous across particle size. The particles were not cytotoxic in reporter stem cells but stainless steel particles activated the Nrf2-dependent oxidative stress pathway. In hSAEC, both particle types induced time- and dose-dependent cytotoxicity, and stainless steel particles also increased generation of reactive oxygen species. The cellular metal content was higher for hSAEC compared to the reporter stem cells exposed to the same nominal dose. This was, in part, related to differences in particle agglomeration/sedimentation in the different cell media. Overall, our study showed differences in cytotoxicity and activation of cancer-related pathways between stainless and mild steel welding particles. Moreover, our data emphasizes the need for careful assessment of the cellular dose when comparing studies using different in vitro models.


Asunto(s)
Contaminantes Ocupacionales del Aire/toxicidad , Acero Inoxidable/toxicidad , Acero/toxicidad , Soldadura , Contaminantes Ocupacionales del Aire/química , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/ultraestructura , Humanos , Exposición por Inhalación/efectos adversos , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Ratones , Microscopía Electrónica de Transmisión , Células Madre Embrionarias de Ratones/efectos de los fármacos , Células Madre Embrionarias de Ratones/metabolismo , Células Madre Embrionarias de Ratones/ultraestructura , Tamaño de la Partícula , Especies Reactivas de Oxígeno/metabolismo , Acero Inoxidable/química , Acero/química , Soldadura/métodos
7.
Artículo en Inglés | MEDLINE | ID: mdl-33865539

RESUMEN

Antimony (Sb) and its compounds are negative in gene mutation assays in bacteria and cultured mammalian cells but positive in some assays for clastogenicity and/or DNA damage. In order to better understand the modes of action for antimony genotoxicity, we assessed reporter gene activation by antimony and antimony compounds in the new expanded ToxTracker assay. ToxTracker evaluates the activation of biomarkers for different cellular defense mechanisms using a series of green fluorescent protein reporters inserted into mouse embryonic stem cell lines. The assay responds to: 1) DNA damage and inhibition of DNA replication; 2) oxidative stress; 3) unfolded protein response (protein damage); and 4) p53-dependent cellular stress. Sb metal powder, six trivalent (Sb(III)) compounds, and five pentavalent antimony (Sb(V)) compounds were assessed. Sb powder and all six Sb(III) compounds activated oxidative stress ToxTracker reporters at non-toxic doses. Of the five Sb(V) compounds, antimony pentachloride and potassium hexahydroantimonate induced a robust oxidative stress response while sodium antimonate induced only a weak oxidative stress response. At higher concentrations (up to either 75 % toxicity or the highest dissolved concentration tested), Sb powder and all Sb(III) compounds except for antimony trichloride induced the unfolded protein response. Of the five Sb(V) compounds tested, only potassium hexahydroantimonate induced weak activation of the unfolded protein response and was also the only pentavalent compound to yield modest (30 %) cytotoxicity. None of the compounds tested activated the DNA damage/inhibition of DNA replication reporters, nor did they activate the p53-dependent response. All Sb(III) compounds, Sb powder, and three of the five Sb(V) compounds activated the oxidative stress reporters, but there was no activation of reporters associated with DNA damage and repair or p53-dependent cellular stress. The consistent activation of reporters for oxidative stress suggests this mode of action may underlie genotoxicity responses for antimony and its compounds.


Asunto(s)
Antimonio/toxicidad , Estrés Oxidativo/efectos de los fármacos , Animales , Antimonio/química , Células Cultivadas , Cloruros/toxicidad , Daño del ADN , Ratones , Ratones Endogámicos C57BL , Células Madre Embrionarias de Ratones/efectos de los fármacos , Células Madre Embrionarias de Ratones/fisiología , Pruebas de Mutagenicidad/métodos , Estrés Oxidativo/genética , Especies Reactivas de Oxígeno/metabolismo
8.
Mutagenesis ; 36(2): 129-142, 2021 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-33769537

RESUMEN

In vitro (geno)toxicity assessment of electronic vapour products (EVPs), relative to conventional cigarette, currently uses assays, including the micronucleus and Ames tests. Whilst informative on induction of a finite endpoint and relative risk posed by test articles, such assays could benefit from mechanistic supplementation. The ToxTracker and Aneugen Clastogen Evaluation analysis can indicate the activation of reporters associated with (geno)toxicity, including DNA damage, oxidative stress, the p53-related stress response and protein damage. Here, we tested for the different effects of a selection of neat e-liquids, EVP aerosols and Kentucky reference 1R6F cigarette smoke samples in the ToxTracker assay. The assay was initially validated to assess whether a mixture of e-liquid base components, propylene glycol (PG) and vegetable glycerine (VG) had interfering effects within the system. This was achieved by spiking three positive controls into the system with neat PG/VG or phosphate-buffered saline bubbled (bPBS) PG/VG aerosol (nicotine and flavour free). PG/VG did not greatly affect responses induced by the compounds. Next, when compared to cigarette smoke samples, neat e-liquids and bPBS aerosols (tobacco flavour; 1.6% freebase nicotine, 1.6% nicotine salt or 0% nicotine) exhibited reduced and less complex responses. Tested up to a 10% concentration, EVP aerosol bPBS did not induce any ToxTracker reporters. Neat e-liquids, tested up to 1%, induced oxidative stress reporters, thought to be due to their effects on osmolarity in vitro. E-liquid nicotine content did not affect responses induced. Additionally, spiking nicotine alone only induced an oxidative stress response at a supraphysiological level. In conclusion, the ToxTracker assay is a quick, informative screen for genotoxic potential and mechanisms of a variety of (compositionally complex) samples, derived from cigarettes and EVPs. This assay has the potential for future application in the assessment battery for next-generation (smoking alternative) products, including EVPs.


Asunto(s)
Aneugénicos/toxicidad , Sistemas Electrónicos de Liberación de Nicotina , Glicerol/toxicidad , Pruebas de Mutagenicidad/métodos , Nicotiana/toxicidad , Nicotina/toxicidad , Propilenglicol/toxicidad , Aerosoles/efectos adversos , Aerosoles/análisis , Animales , Fumar Cigarrillos/efectos adversos , Daño del ADN , Glicerol/análisis , Humanos , Ratones , Ratones Endogámicos C57BL , Células Madre Embrionarias de Ratones , Mutágenos/toxicidad , Nicotina/análisis , Estrés Oxidativo , Propilenglicol/análisis , Medición de Riesgo , Humo/efectos adversos , Fumar/efectos adversos
9.
Toxicol Sci ; 177(1): 202-213, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32617558

RESUMEN

Understanding the mode-of-action (MOA) of genotoxic compounds and differentiating between direct DNA interaction and indirect genotoxicity is crucial for their reliable safety assessment. ToxTracker is a stem cell-based reporter assay that detects activation of various cellular responses that are associated with genotoxicity and cancer. ToxTracker consists of 6 different GFP reporter cell lines that can detect the induction of DNA damage, oxidative stress, and protein damage in a single test. The assay can thereby provide insight into the MOA of compounds. Genotoxicity is detected in ToxTracker by activation of 2 independent GFP reporters. Activation of the Bscl2-GFP reporter is associated with induction of DNA adducts and subsequent inhibition of DNA replication and the Rtkn-GFP reporter is activated following the formation of DNA double-strand breaks. Here, we show that the differential activation of these 2 genotoxicity reporters could be used to further differentiate between a DNA reactive and clastogenic or a non-DNA-reactive aneugenic MOA of genotoxic compounds. For further classification of aneugenic and clastogenic compounds, the ToxTracker assay was extended with cell cycle analysis and aneuploidy assessment. The extension was validated using a selection of 16 (genotoxic) compounds with a well-established MOA. Furthermore, indirect genotoxicity related to the production of reactive oxygen species was investigated using the DNA damage and oxidative stress ToxTracker reporters in combination with different reactive oxygen species scavengers. With these new extensions, ToxTracker was able to accurately classify compounds as genotoxic or nongenotoxic and could discriminate between DNA-reactive compounds, aneugens, and indirect genotoxicity caused by oxidative stress.


Asunto(s)
Aneugénicos , Mutágenos , Aneugénicos/toxicidad , Biomarcadores/metabolismo , Daño del ADN , Pruebas de Mutagenicidad , Mutágenos/toxicidad , Estrés Oxidativo
10.
Chem Res Toxicol ; 33(3): 834-848, 2020 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-32041405

RESUMEN

The ongoing developments in chemical risk assessment have led to new concepts building on integration of sophisticated nonanimal models for hazard characterization. Here we explore a pragmatic approach for implementing such concepts, using a case study of three triazole fungicides, namely, flusilazole, propiconazole, and cyproconazole. The strategy applied starts with evaluating the overall level of concern by comparing exposure estimates to toxicological potential, followed by a combination of in silico tools and literature-derived high-throughput screening assays and computational elaborations to obtain insight into potential toxicological mechanisms and targets in the organism. Additionally, some targeted in vitro tests were evaluated for their utility to confirm suspected mechanisms of toxicity and to generate points of departure. Toxicological mechanisms instead of the current "end point-by-end point" approach should guide the selection of methods and assays that constitute a toolbox for next-generation risk assessment. Comparison of the obtained in silico and in vitro results with data from traditional in vivo testing revealed that, overall, nonanimal methods for hazard identification can produce adequate qualitative hazard information for risk assessment. Follow-up studies are needed to further refine the proposed approach, including the composition of the toolbox, toxicokinetics models, and models for exposure assessment.


Asunto(s)
Fungicidas Industriales/toxicidad , Ensayos Analíticos de Alto Rendimiento , Silanos/toxicidad , Pruebas de Toxicidad , Triazoles/toxicidad , Humanos , Estructura Molecular , Medición de Riesgo
11.
Nanomaterials (Basel) ; 10(1)2020 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-31935871

RESUMEN

The increased use of nanoparticles (NPs) requires efficient testing of their potential toxic effects. A promising approach is to use reporter cell lines to quickly assess the activation of cellular stress response pathways. This study aimed to use the ToxTracker reporter cell lines to investigate (geno)toxicity of various metal- or metal oxide NPs and draw general conclusions on NP-induced effects, in combination with our previous findings. The NPs tested in this study (n = 18) also included quantum dots (QDs) in different sizes. The results showed a large variation in cytotoxicity of the NPs tested. Furthermore, whereas many induced oxidative stress only few activated reporters related to DNA damage. NPs of manganese (Mn and Mn3O4) induced the most remarkable ToxTracker response with activation of reporters for oxidative stress, DNA damage, protein unfolding and p53-related stress. The QDs (CdTe) were highly toxic showing clearly size-dependent effects and calculations suggest surface area as the most relevant dose metric. Of all NPs investigated in this and previous studies the following induce the DNA damage reporter; CuO, Co, CoO, CdTe QDs, Mn, Mn3O4, V2O5, and welding NPs. We suggest that these NPs are of particular concern when considering genotoxicity induced by metal- and metal oxide NPs.

12.
Nanotoxicology ; 13(10): 1293-1309, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31418618

RESUMEN

Millions of people in the world perform welding as their primary occupation resulting in exposure to metal-containing nanoparticles in the fumes generated. Even though health effects including airway diseases are well-known, there is currently a lack of studies investigating how different welding set-ups and conditions affect the toxicity of generated nanoparticles of the welding fume. The aim of this study was to investigate the toxicity of nine types of welding fume particles generated via active gas shielded metal arc welding (GMAW) of chromium-containing stainless steel under different conditions and, furthermore, to correlate the toxicity to the particle characteristics. Toxicological endpoints investigated were generation of reactive oxygen species (ROS), cytotoxicity, genotoxicity and activation of ToxTracker reporter cell lines. The results clearly underline that the choice of filler material has a large influence on the toxic potential. Fume particles generated by welding with the tested flux-cored wire (FCW) were found to be more cytotoxic compared to particles generated by welding with solid wire or metal-cored wire (MCW). FCW fume particles were also the most potent in causing ROS and DNA damage and they furthermore activated reporters related to DNA double- strand breaks and p53 signaling. Interestingly, the FCW fume particles were the most soluble in PBS, releasing more chromium in the hexavalent form and manganese compared to the other fumes. These results emphasize the importance of solubility of different metal constituents of the fume particles, rather than the total metal content, for their acute toxic potential.


Asunto(s)
Contaminantes Ocupacionales del Aire/toxicidad , Células Madre Embrionarias/efectos de los fármacos , Pulmón/efectos de los fármacos , Nanopartículas/toxicidad , Acero Inoxidable , Soldadura , Contaminantes Ocupacionales del Aire/química , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Daño del ADN , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/patología , Humanos , Pulmón/metabolismo , Pulmón/patología , Metales Pesados/química , Metales Pesados/toxicidad , Ratones , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Solubilidad
13.
Toxicol In Vitro ; 61: 104594, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31279906

RESUMEN

The rapid expansion of the incorporation of nano-sized materials in consumer products overlaps with the necessity for high-throughput reliable screening tools for the identification of the potential hazardous properties of the nanomaterials. The ToxTracker assay (mechanism-based reporter assay based on embryonic stem cells that uses GFP-tagged biomarkers for detection of DNA damage, oxidative stress and general cellular stress) is one such tool, which could prove useful in the field of particle toxicology allowing for high throughput screening. Here, ToxTracker was utilised to evaluate the potential hazardous properties of two particulates currently used in the food industry (vegetable carbon (E153) and food-grade TiO2 (E171)). Due to the fact that ToxTracker is based on a stem cell format, it is crucial that the data generated is assessed for its suitability and comparability to more conventionally used relevant source of cells - in this case cells from the gastrointestinal tract and the liver. Therefore, the cell reporter findings were compared to data from traditional assays (cytotoxicity, anti-oxidant depletion and DNA damage) and tissue relevant cell types. The data showed E171 to be the most cytotoxic, decreased intracellular glutathione and the most significant with regards to genotoxic effects. The ToxTracker data showed comparability to conventional toxicity and oxidative stress assays; however, some discrepancies were evident between the findings from ToxTracker and the comet assay.


Asunto(s)
Aditivos Alimentarios/toxicidad , Ensayos Analíticos de Alto Rendimiento , Nanopartículas/toxicidad , Titanio/toxicidad , Pruebas de Toxicidad/métodos , Animales , Células CACO-2 , Daño del ADN , Células Madre Embrionarias/efectos de los fármacos , Industria de Alimentos , Tracto Gastrointestinal/citología , Glutatión/metabolismo , Células Hep G2 , Humanos , Hígado/citología , Ratones , Estrés Oxidativo/efectos de los fármacos
14.
Nanotoxicology ; 12(6): 602-620, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29790399

RESUMEN

An increasing use of cobalt (Co)-based nanoparticles (NPs) in different applications and exposures at occupational settings triggers the need for toxicity assessment. Improved understanding regarding the physiochemical characteristics of Co metal NPs and different oxides in combination with assessment of toxicity and mechanisms may facilitate decisions for grouping during risk assessment. The aim of this study was to gain mechanistic insights in the correlation between NP reactivity and toxicity of three different Co-based NPs (Co, CoO, and Co3O4) by using various tools for characterization, traditional toxicity assays, as well as six reporter cell lines (ToxTracker) for rapid detection of signaling pathways of relevance for carcinogenicity. The results showed cellular uptake of all NPs in lung cells and induction of DNA strand breaks and oxidative damage (comet assay) by Co and CoO NPs. In-depth studies on the ROS generation showed high reactivity of Co, lower for CoO, and no reactivity of Co3O4 NPs. The reactivity depended on the corrosion and transformation/dissolution properties of the particles and the media highlighting the role of the surface oxide and metal speciation as also confirmed by in silico modeling. By using ToxTracker, Co NPs were shown to be highly cytotoxic and induced reporters related to oxidative stress (Nrf2 signaling) and DNA strand breaks. Similar effects were observed for CoO NPs but at higher concentrations, whereas the Co3O4 NPs were inactive at all concentrations tested. In conclusion, our study suggests that Co and CoO NPs, but not Co3O4, may be grouped together for risk assessment.


Asunto(s)
Cobalto/toxicidad , Nanopartículas del Metal/toxicidad , Óxidos/toxicidad , Células A549 , Roturas del ADN/efectos de los fármacos , Humanos , Estrés Oxidativo/efectos de los fármacos
15.
Environ Mol Mutagen ; 59(3): 211-222, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29243303

RESUMEN

Nickel (Ni) compounds are classified as carcinogenic to humans but the underlying mechanisms are still poorly understood. Furthermore, effects related to nanoparticles (NPs) of Ni have not been fully elucidated. The aim of this study was to investigate genotoxicity and mutagenicity of Ni and NiO NPs and compare the effect to soluble Ni from NiCl2 . We employed different models; i.e., exposure of (1) human bronchial epithelial cells (HBEC) followed by DNA strand break analysis (comet assay and γ-H2AX staining); (2) six different mouse embryonic stem (mES) reporter cell lines (ToxTracker) that are constructed to exhibit fluorescence upon the induction of various pathways of relevance for (geno)toxicity and cancer; and (3) mES cells followed by mutagenicity testing (Hprt assay). The results showed increased DNA strand breaks (comet assay) for the NiO NPs and at higher doses also for the Ni NPs whereas no effects were observed for Ni ions/complexes from NiCl2 . By employing the reporter cell lines, oxidative stress was observed as the main toxic mechanism and protein unfolding occurred at cytotoxic doses for all three Ni-containing materials. Oxidative stress was also detected in the HBEC cells following NP-exposure. None of these materials induced the reporter related to direct DNA damage and stalled replication forks. A small but statistically significant increase in Hprt mutations was observed for NiO but only at one dose. We conclude that Ni and NiO NPs show more pronounced (geno)toxic effects compared to Ni ions/complexes, indicating more serious health concerns. Environ. Mol. Mutagen. 59:211-222, 2018. © 2017 The Authors Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.


Asunto(s)
Ensayo Cometa/métodos , Proteínas Fluorescentes Verdes/metabolismo , Histonas/metabolismo , Hipoxantina Fosforribosiltransferasa/metabolismo , Nanopartículas del Metal/toxicidad , Pruebas de Mutagenicidad/métodos , Níquel/toxicidad , Animales , Bioensayo , Bronquios/efectos de los fármacos , Bronquios/patología , Supervivencia Celular , Células Cultivadas , Daño del ADN , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/patología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/patología , Genes Reporteros , Ensayos Analíticos de Alto Rendimiento , Humanos , Ratones , Mutágenos/toxicidad , Mutación , Estrés Oxidativo/efectos de los fármacos
16.
Oncotarget ; 8(9): 15610-15620, 2017 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-28121628

RESUMEN

Multiple studies showed the prognostic capacities of tumor-infiltrating lymphocytes (TILs) in triple-negative breast cancer (TNBC), but not in other subtypes. We evaluated tumor expression of FAS, a key receptor in T-cell mediated apoptosis, as possible explanation for this differential prognostic value of TILs. Furthermore, we evaluated the prognostic relevance of FAS, both as an independent biomarker and in relation to CD8-positive T-cell presence. The study cohort consisted of 667 breast cancer patients treated in the LUMC between 1997 and 2009. FAS expression was determined using immunohistochemistry and the percentage of FAS-positive tumor cells was quantified. Furthermore, the number of CD8-positive infiltrating cells was determined, and its prognostic relevance was associated to FAS-expression using stratified survival analysis. In TNBC, FAS was averagely expressed in 49% of tumor cells, whereas ER-positive subtypes showed an average Fas expression of 16-20%. In the entire cohort, FAS was identified as significant prognostic marker for recurrence (adjusted HR 0.53, 95% CI 0.36-0.77) and borderline significant marker for overall survival (adjusted HR 0.72, 95% CI 0.52-1.01). Upon stratification for FAS-expression, CD8+ TILs were only prognostic at high levels (above median) of FAS expression in ER-negative disease. In summary, FAS was identified as an independent prognostic marker for recurrence free survival in breast cancer, with large variation in expression by receptor subtypes. Interestingly, the prognostic effect of CD8+ TILs in ER-negative disease was only valid for tumors with a high FAS expression.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/metabolismo , Linfocitos T CD8-positivos/metabolismo , Linfocitos Infiltrantes de Tumor/metabolismo , Receptor fas/biosíntesis , Adulto , Anciano , Biomarcadores de Tumor/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/terapia , Estudios de Cohortes , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunohistoquímica , Estimación de Kaplan-Meier , Persona de Mediana Edad , Análisis Multivariante , Terapia Neoadyuvante , Evaluación de Resultado en la Atención de Salud/métodos , Evaluación de Resultado en la Atención de Salud/estadística & datos numéricos , Pronóstico , Modelos de Riesgos Proporcionales , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/terapia , Receptor fas/genética
17.
Artículo en Inglés | MEDLINE | ID: mdl-27776687

RESUMEN

To ensure safety for humans, it is essential to characterize the genotoxic potential of new chemical entities, such as pharmaceutical and cosmetic substances. In a first tier, a battery of in vitro tests is recommended by international regulatory agencies. However, these tests suffer from inadequate specificity: compounds may be wrongly categorized as genotoxic, resulting in unnecessary, time-consuming, and expensive in vivo follow-up testing. In the last decade, novel assays (notably, reporter-based assays) have been developed in an attempt to overcome these drawbacks. Here, we have investigated the performance of two in vitro reporter-based assays, Vitotox and ToxTracker. A set of reference compounds was selected to span a variety of mechanisms of genotoxic action and applicability domains (e.g., pharmaceutical and cosmetic ingredients). Combining the performance of the two assays, we achieved 93% sensitivity and 79% specificity for prediction of gentoxicity for this set of compounds. Both assays permit quick high-throughput analysis of drug candidates, while requiring only small quantities of the test substances. Our study shows that these two assays, when combined, can be a reliable method for assessment of genotoxicity hazard.


Asunto(s)
Mutágenos/toxicidad , Animales , Daño del ADN , Humanos , Pruebas de Mutagenicidad/métodos , Reproducibilidad de los Resultados
18.
Toxicol Sci ; 150(1): 190-203, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26719371

RESUMEN

Chemical exposure of cells may damage biomolecules, cellular structures, and organelles thereby jeopardizing cellular homeostasis. A multitude of defense mechanisms have evolved that can recognize specific types of damaged molecules and will initiate distinct cellular programs aiming to remove the damage inflicted and prevent cellular havoc. As a consequence, quantitative assessment of the activity of the cellular stress responses may serve as a sensitive reporter for the induction of specific types of damage. We have previously developed the ToxTracker assay, a mammalian stem cell-based genotoxicity assay employing two green fluorescent protein reporters specific for DNA damage and oxidative stress. We have now expanded the ToxTracker assay with an additional four reporter cell lines to include monitoring of additional stress signaling pathways. This panel of six green fluorescent protein reporters is able to discriminate between different primary reactivity of chemicals being their ability to react with DNA and block DNA replication, induce oxidative stress, activate the unfolded protein response, or cause a general P53-dependent cellular stress response. Extensive validation using the compound library suggested by the European Centre for the Validation of Alternative Methods (ECVAM) and a large panel of reference chemicals shows that the ToxTracker assay has an outstanding sensitivity and specificity. In addition, we developed Toxplot, a dedicated software tool for automated data analysis and graphical representation of the test results. Rapid and reliable identification by the ToxTracker assay of specific biological reactivity can significantly improve in vitro human hazard assessment of chemicals.


Asunto(s)
Daño del ADN , Células Madre Embrionarias/efectos de los fármacos , Pruebas de Mutagenicidad/métodos , Estrés Oxidativo/efectos de los fármacos , Pliegue de Proteína/efectos de los fármacos , Animales , Biomarcadores/metabolismo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/patología , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Ensayos Analíticos de Alto Rendimiento , Ratones , Estrés Oxidativo/genética , Reproducibilidad de los Resultados
19.
Cancer Epidemiol Biomarkers Prev ; 24(1): 187-97, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25315964

RESUMEN

BACKGROUND: Colon cancer prognosis and treatment are currently based on a classification system still showing large heterogeneity in clinical outcome, especially in TNM stages II and III. Prognostic biomarkers for metastasis risk are warranted as development of distant recurrent disease mainly accounts for the high lethality rates of colon cancer. miRNAs have been proposed as potential biomarkers for cancer. Furthermore, a verified standard for normalization of the amount of input material in PCR-based relative quantification of miRNA expression is lacking. METHODS: A selection of frozen tumor specimens from two independent patient cohorts with TNM stage II-III microsatellite stable primary adenocarcinomas was used for laser capture microdissection. Next-generation sequencing was performed on small RNAs isolated from colorectal tumors from the Dutch cohort (N = 50). Differential expression analysis, comparing in metastasized and nonmetastasized tumors, identified prognostic miRNAs. Validation was performed on colon tumors from the German cohort (N = 43) using quantitative PCR (qPCR). RESULTS: miR25-3p and miR339-5p were identified and validated as independent prognostic markers and used to construct a multivariate nomogram for metastasis risk prediction. The nomogram showed good probability prediction in validation. In addition, we recommend combination of miR16-5p and miR26a-5p as standard for normalization in qPCR of colon cancer tissue-derived miRNA expression. CONCLUSIONS: In this international study, we identified and validated a miRNA classifier in primary cancers, and propose a nomogram capable of predicting metastasis risk in microsatellite stable TNM stage II-III colon cancer. IMPACT: In conjunction with TNM staging, by means of a nomogram, this miRNA classifier may allow for personalized treatment decisions based on individual tumor characteristics.


Asunto(s)
Neoplasias del Colon/genética , Anciano , Neoplasias del Colon/mortalidad , Femenino , Humanos , Masculino , MicroARNs , Persona de Mediana Edad , Metástasis de la Neoplasia , Nomogramas , Pronóstico , Análisis de Supervivencia
20.
BMC Cancer ; 14: 604, 2014 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-25139823

RESUMEN

BACKGROUND: Breast cancer is a heterogeneous disease with a highly variable clinical outcome in which both genetic and epigenetic changes have critical roles. We investigated tumor expression levels of histone-modifying enzymes LSD1, HDAC2 and SIRT1 in relation with patient survival and tumor relapse in a retrospective cohort of 460 breast cancer patients. Additionally, we correlated expression levels with tumor differentiation and tumor cell proliferation. METHODS: Immunohistochemical staining for LSD1, HDAC2 and SIRT1 was performed on tissue microarrays of tumor and corresponding normal formalin-fixed paraffin-embedded tissues from breast cancer patients. Median nuclear expression levels in tumor tissues were used to divide the patients into low and high expression categories. In combined expression analyses, patients were divided into four subgroups: 1, all enzymes below-median; 2, one enzyme above-median; 3, two enzymes above-median; 4, all three enzymes above-median. The Cox proportional hazard model was used for univariate and multivariate survival analyses. The Pearson Chi-square method was used to assess correlation of combined expression levels with tumor cell proliferation and tumor differentiation. RESULTS: Expression of LSD1 and SIRT1, but not of HDAC2, was significantly increased in tumor tissues compared to their normal counterparts (both p < 0.001). Multivariate survival analyses identified SIRT1 as independent prognostic factor for relapse-free survival (RFS) with a hazard ratio (HR) of 1.34 (95% CI = 1.04-1.74, p = 0.02). For overall survival (OS), no significant differences were found when the individual enzymes were analyzed. Analyses of combined expression levels of the three histone-modifying enzymes correlated with OS (p = 0.03) and RFS (p = 0.006) with a HR of respectively 1.49 (95% CI = 1.07-2.08) and 1.68 (95% CI = 1.16-2.44) in multivariate analyses and were also related to tumor differentiation (p < 0.001) and tumor cell proliferation (p = 0.002). CONCLUSIONS: When the combined expression levels were analyzed, high expression of LSD1, HDAC2 and SIRT1 showed shorter patient survival time and shorter time to tumor relapse and correlated with poor tumor differentiation and a high level of tumor cell proliferation. Expression of these histone-modifying enzymes might therefore be involved in breast cancer pathogenesis.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Histona Desacetilasa 2/metabolismo , Histona Demetilasas/metabolismo , Sirtuina 1/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias de la Mama/metabolismo , Diferenciación Celular , Núcleo Celular/metabolismo , Proliferación Celular , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Persona de Mediana Edad , Estudios Retrospectivos , Análisis de Supervivencia , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...