Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Harmful Algae ; 133: 102607, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38485441

RESUMEN

Domoic acid (DA) is a potent neurotoxin produced by diatoms of the genus Pseudo-nitzschia and is responsible for Amnesic Shellfish Poisoning (ASP) in humans. Some fishery resources of high commercial value, such as the king scallop Pecten maximus, are frequently exposed to toxic Pseudo-nitzschia blooms and are capable of accumulating high amounts of DA, retaining it for months or even a few years. This poses a serious threat to public health and a continuous economical risk due to fishing closures of this resource in the affected areas. Recently, it was hypothesized that trapping of DA within autophagosomic-vesicles could be one reason explaining the long retention of the remaining toxin in P. maximus digestive gland. To test this idea, we follow the kinetics of the subcellular localization of DA in the digestive glands of P. maximus during (a) the contamination process - with sequential samplings of scallops reared in the field during 234 days and naturally exposed to blooms of DA-producing Pseudo-nitzschia australis, and (b) the decontamination process - where highly contaminated scallops were collected after a natural bloom of toxic P. australis and subjected to DA-depuration in the laboratory for 60 days. In the digestive gland, DA-depuration rate (0.001 day-1) was much slower than contamination kinetics. The subcellular analyses revealed a direct implication of early autophagy in DA sequestration throughout contamination (r = 0.8, P < 0.05), while the presence of DA-labeled residual bodies (late autophagy) appeared to be strongly and significantly related to slow DA-depuration (r = -0.5) resembling an analogous DA-tattooing in the digestive glands of P. maximus. This work provides new evidence about the potential physiological mechanisms involved in the long retention of DA in P. maximus and represents the baseline to explore procedures to accelerate decontamination in this species.


Asunto(s)
Diatomeas , Ácido Kaínico/análogos & derivados , Pecten , Pectinidae , Intoxicación por Mariscos , Tatuaje , Animales , Humanos , Toxinas Marinas
2.
Aquat Toxicol ; 266: 106793, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38071899

RESUMEN

Despite the deleterious effects of the phycotoxin domoic acid (DA) on human health, and the permanent threat of blooms of the toxic Pseudo-nitzschia sp. over commercially important fishery-resources, knowledge regarding the physiological mechanisms behind the profound differences in accumulation and depuration of this toxin in contaminated invertebrates remain very scarce. In this work, a comparative analysis of accumulation, isomer content, and subcellular localization of DA in different invertebrate species was performed. Samples of scallops Pecten maximus and Aequipecten opercularis, clams Donax trunculus, slippersnails Crepidula fornicata, and seasquirts Asterocarpa sp. were collected after blooms of the same concentration of toxic Pseudo-nitzschia australis. Differences (P < 0.05) in DA accumulation were found, wherein P. maximus showed up to 20-fold more DA in the digestive gland than the other species. Similar profiles of DA isomers were found between P. maximus and A. opercularis, whereas C. fornicata was the species with the highest biotransformation rate (∼10 %) and D. trunculus the lowest (∼4 %). DA localization by immunohistochemical analysis revealed differences (P < 0.05) between species: in P. maximus, DA was detected mainly within autophagosome-like vesicles in the cytoplasm of digestive cells, while in A. opercularis and C. fornicata significant DA immunoreactivity was found in post-autophagy residual bodies. A slight DA staining was found free within the cytoplasm of the digestive cells of D. trunculus and Asterocarpa sp. The Principal Component Analysis revealed similarities between pectinids, and a clear distinction of the rest of the species based on their capabilities to accumulate, biotransform, and distribute the toxin within their tissues. These findings contribute to improve the understanding of the inter-specific differences concerning the contamination-decontamination kinetics and the fate of DA in invertebrate species.


Asunto(s)
Diatomeas , Pectinidae , Contaminantes Químicos del Agua , Animales , Humanos , Toxinas Marinas/toxicidad , Contaminantes Químicos del Agua/toxicidad , Diatomeas/metabolismo , Ácido Kaínico/toxicidad , Ácido Kaínico/análisis , Ácido Kaínico/metabolismo , Pectinidae/metabolismo
3.
Mar Drugs ; 21(8)2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37623716

RESUMEN

Shellfish accumulate microalgal toxins, which can make them unsafe for human consumption. In France, in accordance with EU regulations, three groups of marine toxins are currently under official monitoring: lipophilic toxins, saxitoxins, and domoic acid. Other unregulated toxin groups are also present in European shellfish, including emerging lipophilic and hydrophilic marine toxins (e.g., pinnatoxins, brevetoxins) and the neurotoxin ß-N-methylamino-L-alanine (BMAA). To acquire data on emerging toxins in France, the monitoring program EMERGTOX was set up along the French coasts in 2018. Three new broad-spectrum LC-MS/MS methods were developed to quantify regulated and unregulated lipophilic and hydrophilic toxins and the BMAA group in shellfish (bivalve mollusks and gastropods). A single-laboratory validation of each of these methods was performed. Additionally, these specific, reliable, and sensitive operating procedures allowed the detection of groups of EU unregulated toxins in shellfish samples from French coasts: spirolides (SPX-13-DesMeC, SPX-DesMeD), pinnatoxins (PnTX-G, PnTX-A), gymnodimines (GYM-A), brevetoxins (BTX-2, BTX-3), microcystins (dmMC-RR, MC-RR), anatoxin, cylindrospermopsin and BMAA/DAB. Here, we present essentially the results of the unregulated toxins obtained from the French EMERGTOX monitoring plan during the past five years (2018-2022). Based on our findings, we outline future needs for monitoring to protect consumers from emerging unregulated toxins.


Asunto(s)
Mariscos , Espectrometría de Masas en Tándem , Humanos , Cromatografía Liquida , Toxinas Marinas/toxicidad , Francia
4.
Harmful Algae ; 125: 102426, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37220980

RESUMEN

At the end of July 2021, a bloom of Lingulodinium polyedra developed along the French Atlantic coast and lasted six weeks. The REPHY monitoring network and the citizen participation project PHENOMER contributed to its observation. A maximum concentration of 3,600,000 cells/L was reached on the 6th of September, a level never recorded on French coastlines. Satellite observation confirmed that the bloom reached its highest abundance and spatial extension early September, covering about 3200 km2 on the 4th of September. Cultures were established, and morphology and ITS-LSU sequencing identified the species as L. polyedra. The thecae displayed the characteristic tabulation and sometimes a ventral pore. The pigment composition of the bloom was similar to that of cultured L. polyedra, confirming that phytoplankton biomass was dominated by this species. The bloom was preceded by Leptocylindrus sp., developed over Lepidodinium chlorophorum, and was succeeded by elevated Noctiluca scintillans concentrations. Afterwards, relatively high abundance of Alexandrium tamarense were observed in the embayment where the bloom started. Unusually high precipitation during mid-July increased river discharges from the Loire and Vilaine rivers, which likely fueled phytoplankton growth by providing nutrients. Water masses with high numbers of dinoflagellates were characterized by high sea surface temperature and thermohaline stratification. The wind was low during the bloom development, before drifting it offshore. Cysts were observed in the plankton towards the end of the bloom, with concentrations up to 30,000 cysts/L and relative abundances up to 99%. The bloom deposited a seed bank, with cyst concentrations up to 100,000 cysts/g dried sediment, particularly in fine-grained sediments. The bloom caused hypoxia events, and concentrations of yessotoxins up to 747 µg/kg were recorded in mussels, below the safety threshold of 3,750 µg/kg. Oysters, clams and cockles also were contaminated with yessotoxins, but at lower concentrations. The established cultures did not produce yessotoxins at detectable levels, although yessotoxins were detected in the sediment. The unusual environmental summertime conditions that triggered the bloom, as well as the establishment of considerable seed banks, provide important findings to understand future harmful algal blooms along the French coastline.


Asunto(s)
Dinoflagelados , Fitoplancton , Floraciones de Algas Nocivas , Biomasa
5.
J Phycol ; 58(3): 465-486, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35234279

RESUMEN

The taxonomy of the extant dinoflagellate genus Gonyaulax is challenging since its thecate morphology is rather conservative. In contrast, cysts of Gonyaulax are varied in morphology and have been related with the fossil-based genera Spiniferites and Impagidinium. To better understand the systematics of Gonyaulax species, we performed germination experiments on cysts that can be identified as S. ristingensis, an unidentified Spiniferites with petaloid processes here described as Spiniferites pseudodelicatus sp. nov. and Impagidinium variaseptum from Chinese and Portuguese waters. Despite marked differences in cyst morphology, motile cells of S. pseudodelicatus and I. variaseptum are indistinguishable from Gonyaulax baltica. Motile cells hatched from S. ristingensis are morphologically similar to G. baltica as well but differ in the presence of one pronounced antapical spine. Three new species, Gonyaulax amoyensis (cyst equivalent S. pseudodelicatus), Gonyaulax bohaiensis (cyst equivalent I. variaseptum), and Gonyaulax portimonensis (cyst equivalent S. ristingensis), were erected. In addition, a new ribotype (B) of G. baltica was reported from South Korea and a bloom of G. baltica ribotype B is reported from New Zealand. Molecular phylogeny based on LSU and SSU rRNA gene sequences revealed that Gonyaulax species with minute or short antapical spines formed a well-resolved clade, whereas species with two pronounced antapical spines or lack of antapical spines formed the sister clade. Six strains of four above species were examined for yessotoxin production by liquid chromatography coupled with tandem mass spectrometry, and very low concentrations of yessotoxin were detected for one G. bohaiensis strain.


Asunto(s)
Dinoflagelados , Cromatografía Liquida , Dinoflagelados/genética , Filogenia , República de Corea , Espectrometría de Masas en Tándem
6.
Harmful Algae ; 113: 102206, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35287930

RESUMEN

In the dinophyte genus Ostreopsis, seven out of 11 described species are known to produce various toxic compounds that were characterized in the palytoxins family. Species in the genus shared identical thecal plate patterns but differed in size, shape, and thecal plate ornamentation. Two species, O. cf. ovata and O. siamensis, have been reported from the Western Pacific, but information on toxin production is scarce. Here, we established nine strains of Ostreopsis from six localities in the South China Sea (SCS), covering the Gulf of Thailand, northern SCS (Hainan Island, Beibu Bay), and southern SCS (Peninsular Malaysia). Their morphology was examined by light and electron microscopy and the molecular phylogeny was inferred based on the LSU rDNA (D1-D3) and ITS rDNA sequences using maximum likelihood and Bayesian inference. Both O. cf. ovata and O. siamensis, albeit morphologically closely related, can be distinguished by a feature of the thecal pores with pronounced ridges in the latter. Molecular data further supported their species identity. Toxin production in the strains was examined by LC-MS/MS. O. cf. ovata strain T5PRBost02 was observed to produce Ovatoxin-k and Ovatoxin-j2 only; while Ostreocin-B and Ostreocin-D was produced by O. siamensis strain T10PRBost04. This is the first report confirming the production of palytoxins analogs in Ostreopsis species from the region.


Asunto(s)
Dinoflagelados , Espectrometría de Masas en Tándem , Teorema de Bayes , Cromatografía Liquida , ADN Ribosómico/genética , Dinoflagelados/genética
7.
Mar Drugs ; 19(7)2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34356818

RESUMEN

In France, four groups of lipophilic toxins are currently regulated: okadaic acid/dinophysistoxins, pectenotoxins, yessotoxins and azaspiracids. However, many other families of toxins exist, which can be emerging toxins. Emerging toxins include both toxins recently detected in a specific area of France but not regulated yet (e.g., cyclic imines, ovatoxins) or toxins only detected outside of France (e.g., brevetoxins). To anticipate the introduction to France of these emerging toxins, a monitoring program called EMERGTOX was set up along the French coasts in 2018. The single-laboratory validation of this approach was performed according to the NF V03-110 guidelines by building an accuracy profile. Our specific, reliable and sensitive approach allowed us to detect brevetoxins (BTX-2 and/or BTX-3) in addition to the lipophilic toxins already regulated in France. Brevetoxins were detected for the first time in French Mediterranean mussels (Diana Lagoon, Corsica) in autumn 2018, and regularly every year since during the same seasons (autumn, winter). The maximum content found was 345 µg (BTX-2 + BTX-3)/kg in mussel digestive glands in November 2020. None were detected in oysters sampled at the same site. In addition, a retroactive analysis of preserved mussels demonstrated the presence of BTX-3 in mussels from the same site sampled in November 2015. The detection of BTX could be related to the presence in situ at the same period of four Karenia species and two raphidophytes, which all could be potential producers of these toxins. Further investigations are necessary to understand the origin of these toxins.


Asunto(s)
Bivalvos , Monitoreo del Ambiente , Toxinas Marinas/química , Oxocinas/química , Animales , Organismos Acuáticos , Francia , Mar Mediterráneo , Alimentos Marinos
8.
Harmful Algae ; 98: 101888, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-33129466

RESUMEN

Among dinoflagellates responsible for benthic harmful algal blooms, the genus Ostreopsis primarily described from tropical areas has been increasingly reported from subtropical and temperate areas worldwide. Several species of this toxigenic genus produce analogs of palytoxin, thus representing a major threat to human and environmental health. The taxonomy of several species needs to be clarified as it was based mostly on morphological descriptions leading in some cases to ambiguous interpretations and misidentifications. The present study aims at reporting a benthic bloom that occurred in April 2019 in Tahiti island, French Polynesia. A complete taxonomic investigation of the blooming Ostreopsis species was realized using light, epifluorescence and field emission electron microscopy and phylogenetic analyses inferred from LSU rDNA and ITS-5.8S rDNA regions. Toxicity of a natural sample and strains isolated from the bloom was assessed using both neuroblastoma cell-based assay and LC-MS/MS analyses. Morphological observations showed that cells were round to oval, large, 58.0-82.5 µm deep (dorso-ventral length) and 45.7-61.2 µm wide. The cingulum was conspicuously undulated, forming a 'V' in ventral view. Thecal plates possessed large pores in depressions, with a collar rim. Detailed observation also revealed the presence of small thecal pores invisible in LM. Phylogenetic analyses were congruent and all sequences clustered within the genotype Ostreopsis sp. 6, in a subclade closely related to sequences from the Gulf of Thailand and Malaysia. No toxicity was found on the field sample but all the strains isolated from the bloom were found to be cytotoxic and produced ostreocin D, a lower amount of ostreocins A and B and putatively other compounds. Phylogenetic data demonstrate the presence of this species in the Gulf of Thailand, at the type locality of O. siamensis, and morphological data are congruent with the original description and support this identification.


Asunto(s)
Dinoflagelados , Espectrometría de Masas en Tándem , Cromatografía Liquida , Dinoflagelados/genética , Islas , Malasia , Océano Pacífico , Filogenia , Polinesia
9.
Harmful Algae ; 88: 101610, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31582156

RESUMEN

The cosmopolitan, potentially toxic dinoflagellate Protoceratium reticulatum possesses a fossilizable cyst stage which is an important paleoenvironmental indicator. Slight differences in the internal transcribed spacer ribosomal DNA (ITS rDNA) sequences of P. reticulatum have been reported, and both the motile stage and cyst morphology of P. reticulatum display phenotypic plasticity, but how these morpho-molecular variations are related with ecophysiological preferences is unknown. Here, 55 single cysts or cells were isolated from localities in the Northern (Arctic to subtropics) and Southern Hemispheres (Chile and New Zealand), and in total 34 strains were established. Cysts and/or cells were examined with light microscopy and/or scanning electron microscopy. Large subunit ribosomal DNA (LSU rDNA) and/or ITS rDNA sequences were obtained for all strains/isolates. All strains/isolates of P. reticulatum shared identical LSU sequences except for one strain from the Mediterranean Sea that differs in one position, however ITS rDNA sequences displayed differences at eight positions. Molecular phylogeny was inferred using maximum likelihood and Bayesian inference based on ITS rDNA sequences. The results showed that P. reticulatum comprises at least three ribotypes (designated as A, B, and C). Ribotype A included strains from the Arctic and temperate areas, ribotype B included strains from temperate regions only, and ribotype C included strains from the subtropical and temperate areas. The average ratios of process length to cyst diameter of P. reticulatum ranged from 15% in ribotype A, 22% in ribotype B and 17% in ribotype C but cyst size could overlap. Theca morphology was indistinguishable among ribotypes. The ITS-2 secondary structures of ribotype A displayed one CBC (compensatory change on two sides of a helix pairing) compared to ribotypes B and C. Growth response of one strain from each ribotype to various temperatures was examined. The strains of ribotypes A, B and C exhibited optimum growth at 15 °C, 20 °C and 20-25 °C, respectively, thus corresponding to cold, moderate and warm ecotypes. The profiles of yessotoxins (YTXs) were examined for 25 strains using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). The parent compound yessotoxin (YTX) was produced by strains of ribotypes A and B, but not by ribotype C strains, which only produced the structural variant homoyessotoxin (homoYTX). Our results support the notion that there is significant intra-specific variability in Protoceratium reticulatum and the biogeography of the different ribotypes is consistent with specific ecological preferences.


Asunto(s)
Dinoflagelados , Toxinas Marinas , Regiones Árticas , Teorema de Bayes , Chile , Cromatografía Liquida , Mar Mediterráneo , Nueva Zelanda , Espectrometría de Masas en Tándem
10.
Harmful Algae ; 84: 95-111, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-31128817

RESUMEN

To date, the genus Ostreopsis comprises eleven described species, of which seven are toxigenic and produce various compounds presenting a major threat to human and environmental health. The taxonomy of several of these species however remains controversial, as it was based mostly on morphological descriptions leading, in some cases, to ambiguous interpretations and even possible misidentifications. The species Ostreopsis lenticularis was first described by Y. Fukuyo from French Polynesia using light microscopy observations, but without genetic information associated. The present study aims at revisiting the morphology, molecular phylogeny and toxicity of O. lenticularis based on the analysis of 47 strains isolated from 4 distinct locales of French Polynesia, namely the Society, Australes, Marquesas and Gambier archipelagos. Observations in light, epifluorescence and field emission scanning electron microscopy of several of these strains analyzed revealed morphological features in perfect agreement with the original description of O. lenticularis. Cells were oval, not undulated, 60.5-94.4 µm in dorso-ventral length, 56.1-78.2 µm in width, and possessed a typical plate pattern with thecal plates showing two sizes of pores. Phylogenetic analyses inferred from the LSU rDNA and ITS-5.8S sequences revealed that the 47 strains correspond to a single genotype, clustering with a strong support with sequences previously ascribed to Ostreopsis sp. 5. Clonal cultures of O. lenticularis were also established and further tested for their toxicity using the neuroblastoma cell-based assay and LCMS/MS analyses. None of the 19 strains tested showed toxic activity on neuroblastoma cells, while LCMS/MS analyses performed on the strains from Tahiti Island (i.e. type locality) confirmed that palytoxin and related structural analogs were below the detection limit. These findings allow to clarify unambiguously the genetic identity of O. lenticularis while confirming previous results from the Western Pacific which indicate that this species shows no toxicity, thus stressing the need to reconsider its current classification within the group of toxic species.


Asunto(s)
Dinoflagelados , ADN Ribosómico , Océano Pacífico , Filogenia , Polinesia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...