Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pest Manag Sci ; 80(7): 3640-3649, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38456555

RESUMEN

BACKGROUND: The potential of copper nanoparticles (Cu-NPs) to be used as an alternative control strategy against olive fruit flies (Bactrocera oleae) with reduced sensitivity to the pyrethroid deltamethrin and the impact of both nanosized and bulk copper hydroxide (Cu(OH)2) on the insect's reproductive and endosymbiotic parameters were investigated. RESULTS: The application of nanosized and bulk copper applied by feeding resulted in significant levels of adult mortality, comparable to or surpassing those achieved with deltamethrin at recommended doses. Combinations of Cu-NPs or copper oxide nanoparticles (CuO-NPs) with deltamethrin significantly enhanced the insecticide's efficacy against B. oleae adults. When combined with deltamethrin, Cu-NPs significantly reduced the mean total number of offspring compared with the control, and the number of stings, pupae, female and total number of offspring compared with the insecticide alone. Both bulk and nanosized copper negatively affected the abundance of the endosymbiotic bacterium Candidatus Erwinia dacicola which is crucial for the survival of B. oleae larvae. CONCLUSION: The Cu-NPs can aid the control of B. oleae both by reducing larval survival and by enhancing deltamethrin performance in terms of toxicity and reduced fecundity, providing an effective anti-resistance tool and minimizing the environmental footprint of synthetic pesticides by reducing the required doses for the control of the pest. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Cobre , Fertilidad , Insecticidas , Nanopartículas del Metal , Piretrinas , Tephritidae , Animales , Tephritidae/efectos de los fármacos , Tephritidae/fisiología , Cobre/farmacología , Fertilidad/efectos de los fármacos , Insecticidas/farmacología , Femenino , Piretrinas/farmacología , Simbiosis , Nitrilos/farmacología , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo , Masculino , Resistencia a los Insecticidas
2.
J Mol Evol ; 91(4): 471-481, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37039856

RESUMEN

Selenium-binding proteins represent a ubiquitous protein family and recently SBP1 was described as a new stress response regulator in plants. SBP1 has been characterized as a methanethiol oxidase, however its exact role remains unclear. Moreover, in mammals, it is involved in the regulation of anti-carcinogenic growth and progression as well as reduction/oxidation modulation and detoxification. In this work, we delineate the functional potential of certain motifs of SBP in the context of evolutionary relationships. The phylogenetic profiling approach revealed the absence of SBP in the fungi phylum as well as in most non eukaryotic organisms. The phylogenetic tree also indicates the differentiation and evolution of characteristic SBP motifs. Main evolutionary events concern the CSSC motif for which Acidobacteria, Fungi and Archaea carry modifications. Moreover, the CC motif is harbored by some bacteria and remains conserved in Plants, while modified to CxxC in Animals. Thus, the characteristic sequence motifs of SBPs mainly appeared in Archaea and Bacteria and retained in Animals and Plants. Our results demonstrate the emergence of SBP from bacteria and most likely as a methanethiol oxidase.


Asunto(s)
Proteínas , Proteínas de Unión al Selenio , Animales , Proteínas de Unión al Selenio/genética , Proteínas de Unión al Selenio/metabolismo , Filogenia , Bacterias/genética , Bacterias/metabolismo , Archaea/genética , Archaea/metabolismo , Plantas , Oxidorreductasas/genética , Mamíferos/metabolismo
3.
Int J Mol Sci ; 24(3)2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36768644

RESUMEN

Polyamine oxidases (PAOs) have been correlated with numerous physiological and developmental processes, as well as responses to biotic and abiotic stress conditions. Their transcriptional regulation is driven by signals generated by various developmental and environmental cues, including phytohormones. However, the inductive mechanism(s) of the corresponding genes remains elusive. Out of the five previously characterized Arabidopsis PAO genes, none of their regulatory sequences have been analyzed to date. In this study, a GUS reporter-aided promoter deletion approach was used to investigate the transcriptional regulation of AtPAO3 during normal growth and development as well as under various inductive environments. AtPAO3 contains an upstream open reading frame (uORF) and a short inter-cistronic sequence, while the integrity of both appears to be crucial for the proper regulation of gene expression. The full-length promoter contains several cis-acting elements that regulate the tissue-specific expression of AtPAO3 during normal growth and development. Furthermore, a number of TFBS that are involved in gene induction under various abiotic stress conditions display an additive effect on gene expression. Taken together, our data indicate that the transcription of AtPAO3 is regulated by multiple environmental factors, which probably work alongside hormonal signals and shed light on the fine-tuning mechanisms of PAO regulation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Hidrolasas/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Regiones Promotoras Genéticas , Genes Reporteros , Poliamino Oxidasa
4.
Int J Mol Sci ; 24(4)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36834990

RESUMEN

In this study, we focused on a member of the Ole e 1 domain-containing family, AtSAH7, in Arabidopsis thaliana. Our lab reports for the first time on this protein, AtSAH7, that was found to interact with Selenium-binding protein 1 (AtSBP1). We studied by GUS assisted promoter deletion analysis the expression pattern of AtSAH7 and determined that the sequence 1420 bp upstream of the transcription start can act as a minimal promoter inducing expression in vasculature tissues. Moreover, mRNA levels of AtSAH7 were acutely increased under selenite treatment in response to oxidative stress. We confirmed the aforementioned interaction in vivo, in silico and in planta. Following a bimolecular fluorescent complementation approach, we determined that the subcellular localization of the AtSAH7 and the AtSAH7/AtSBP1 interaction occur in the ER. Our results indicate the participation of AtSAH7 in a biochemical network regulated by selenite, possibly associated with responses to ROS production.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácido Selenioso , Proteínas de Unión al Selenio , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Estrés Oxidativo/genética , Estrés Oxidativo/fisiología , Ácido Selenioso/metabolismo , Proteínas de Unión al Selenio/genética
5.
Plant Physiol ; 189(4): 2368-2381, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35579367

RESUMEN

Selenium-binding proteins (SBPs) represent a ubiquitous protein family implicated in various environmental stress responses, although the exact molecular and physiological role of the SBP family remains elusive. In this work, we report the identification and characterization of CrSBD1, an SBP homolog from the model microalgae Chlamydomonas reinhardtii. Growth analysis of the C. reinhardtii sbd1 mutant strain revealed that the absence of a functional CrSBD1 resulted in increased growth under mild oxidative stress conditions, although cell viability rapidly declined at higher hydrogen peroxide (H2O2) concentrations. Furthermore, a combined global transcriptomic and metabolomic analysis indicated that the sbd1 mutant exhibited a dramatic quenching of the molecular and biochemical responses upon H2O2-induced oxidative stress when compared to the wild-type. Our results indicate that CrSBD1 represents a cell regulator, which is involved in the modulation of C. reinhardtii early responses to oxidative stress. We assert that CrSBD1 acts as a member of an extensive and conserved protein-protein interaction network including Fructose-bisphosphate aldolase 3, Cysteine endopeptidase 2, and Glutaredoxin 6 proteins, as indicated by yeast two-hybrid assays.


Asunto(s)
Chlamydomonas reinhardtii , Microalgas , Chlamydomonas reinhardtii/metabolismo , Peróxido de Hidrógeno/metabolismo , Microalgas/metabolismo , Estrés Oxidativo , Proteínas de Unión al Selenio/genética , Proteínas de Unión al Selenio/metabolismo
6.
Plant Sci ; 315: 111157, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35067295

RESUMEN

AtRD19c is a member of the papain-like cysteine proteases known for its participation in anther development after its maturation by ßVPE (vacuolar processing enzyme). This papain-like cysteine protease was identified as an interacting protein of AtSBP1 (selenium binding protein 1) in a yeast two-hybrid screening. To confirm this interaction, we studied AtRD19c with respect to its expression and ability to interact with AtSBP1. The highest gene expression levels of AtRD19c were observed in the roots of 10-day-old seedlings, whereas minimum levels appeared in the hypocotyls of 10-day-old seedlings and flowers. AtRD19c expression was upregulated by selenium, and analysis of its promoter activity showed colocalization of a reporter gene (GUS) with AtSBP1. Additionally, the AtRD19c expression pattern was upregulated in the presence of selenite, indicating its participation in the Se response network. Confocal fluorescence microscopy revealed that AtRD19c localizes in the root tip, lateral roots, and leaf trichomes. Finally, we confirmed the physical interaction between AtRD19c and AtSBP1 and showed the importance of the first 175 aa of the AtSBP1 polypeptide in this interaction. Importantly, the AtRD19c-AtSBP1 interaction was also demonstrated in planta by employing bimolecular fluorescent complementation (BiFC) in a protoplast system.


Asunto(s)
Arabidopsis/genética , Arabidopsis/metabolismo , Proteasas de Cisteína/genética , Proteasas de Cisteína/metabolismo , Papaína/genética , Papaína/metabolismo , Proteínas de Unión al Selenio/genética , Proteínas de Unión al Selenio/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Genes Reporteros , Filogenia
7.
Int J Dev Biol ; 66(1-2-3): 177-186, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34549791

RESUMEN

WD40-repeat-containing proteins (WDRs) are highly abundant in all eukaryotes. Several have been implicated as subunits of multi-protein CRL E3 ligase complexes that regulate ubiquitination mediated protein degradation and thus various cellular and developmental processes. Impairment of the WDR protein ULCS1 from Arabidopsis causes pleiotropic phenotypes during plant development, including reduced lignification, anther indehiscence, and sterility. Here we show that RNAi-mediated downregulation of ULCS1 results in a fast-growing phenotype during vegetative development. Due to accelerated growth, ulcs1i mutants reach their vegetative to reproductive transition point earlier than WT plants. However, their comparable germination rate and their similar number of secondary branches and rosette leaves at bolting indicate that ulcs1i is not an early flowering time mutant. GUS staining of progeny, obtained from crosses between ulcs1i and CYCB1::GUS plants, revealed an increased number of mitotic cell divisions in the root meristems of ulcs1i compared to WT. Immunolabeling of homogalacturonans (HGAs) epitopes showed significant fluorescent signal differences at the cell walls and the mucilage of the seeds between ulcs1i and WT. Furthermore, we demonstrate that ULCS1 interacts with the UBA-like protein in a yeast two-hybrid assay, suggesting a direct or indirect physical coupling of these proteins in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Mutación , Fenotipo , Desarrollo de la Planta/genética , Interferencia de ARN
8.
Plant Sci ; 291: 110357, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31928671

RESUMEN

Phospholipase PLA1-Iγ2 or otherwise DAD1-LIKE LIPASE 3 (DALL3) is a member of class I phospholipases and has a role in JA biosynthesis. AtDALL3 was previously identified in a yeast two-hybrid screening as an interacting protein of the Arabidopsis Selenium Binding Protein 1 (SBP1). In this work, we have studied AtDALL3 as an interacting partner of the Arabidopsis Selenium Binding Protein 1 (SBP1). Phylogenetic analysis showed that DALL3 appears in the PLA1-Igamma1, 2 group, paired with PLA1-Igammma1. The highest level of expression of AtDALL3 was observed in 10-day-old roots and in flowers, while constitutive levels were maintained in seedlings, cotyledons, shoots and leaves. In response to abiotic stress, DALL3 was shown to participate in the network of genes regulated by cadmium, selenite and selenate compounds. DALL3 promoter driven GUS assays revealed that the expression patterns defined were overlapping with the patterns reported for AtSBP1 gene, indicating that DALL3 and SBP1 transcripts co-localize. Furthermore, quantitative GUS assays showed that these compounds elicited changes in activity in specific cells files, indicating the differential response of DALL3 promoter. GFP::DALL3 studies by confocal microscopy demonstrated the localization of DALL3 in the plastids of the root apex, the plastids of the central root and the apex of emerging lateral root primordia. Additionally, we confirmed by yeast two hybrid assays the physical interaction of DALL3 with SBP1 and defined a minimal SBP1 fragment that DALL3 binds to. Finally, by employing bimolecular fluorescent complementation we demonstrated the in planta interaction of the two proteins.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Hidrolasas de Éster Carboxílico/genética , Proteínas de Unión al Selenio/genética , Secuencia de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Hidrolasas de Éster Carboxílico/química , Hidrolasas de Éster Carboxílico/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Filogenia , Proteínas de Unión al Selenio/química , Proteínas de Unión al Selenio/metabolismo , Alineación de Secuencia
9.
Plant Sci ; 281: 102-112, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30824043

RESUMEN

During abiotic stress the primary symptom of phytotoxicity can be ROS production which is strictly regulated by ROS scavenging pathways involving enzymatic and non-enzymatic antioxidants. Furthermore, ROS are well-described secondary messengers of cellular processes, while during the course of evolution, plants have accomplished high degree of control over ROS and used them as signalling molecules. Glutaredoxins (GRXs) are small and ubiquitous glutathione (GSH) -or thioredoxin reductase (TR)-dependent oxidoreductases belonging to the thioredoxin (TRX) superfamily which are conserved in most eukaryotes and prokaryotes. In Arabidopsis thaliana GRXs are subdivided into four classes playing a central role in oxidative stress responses and physiological functions. In this work, we describe a novel interaction of AtGRXS14 with the Selenium Binding Protein 1 (AtSBP1), a protein proposed to be integrated in a regulatory network that senses alterations in cellular redox state and acts towards its restoration. We further show that SBP protein family interacts with AtGRXS16 that also contains a PICOT domain, like AtGRXS14.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Endonucleasas/metabolismo , Proteínas de Unión al Selenio/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Endonucleasas/genética , Unión Proteica , Proteínas de Unión al Selenio/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...