Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 129(7): 076801, 2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-36018693

RESUMEN

In the archetypal monolayer semiconductor WSe_{2}, the distinct ordering of spin-polarized valleys (low-energy pockets) in the conduction band allows for studies of not only simple neutral excitons and charged excitons (i.e., trions), but also more complex many-body states that are predicted at higher electron densities. We discuss magneto-optical measurements of electron-rich WSe_{2} monolayers and interpret the spectral lines that emerge at high electron doping as optical transitions of six-body exciton states ("hexcitons") and eight-body exciton states ("oxcitons"). These many-body states emerge when a photoexcited electron-hole pair interacts simultaneously with multiple Fermi seas, each having distinguishable spin and valley quantum numbers. In addition, we explain the relations between dark trions and satellite optical transitions of hexcitons in the photoluminescence spectrum.

2.
Nat Commun ; 12(1): 5455, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34526493

RESUMEN

Monolayers of transition metal dichalcogenides are ideal materials to control both spin and valley degrees of freedom either electrically or optically. Nevertheless, optical excitation mostly generates excitons species with inherently short lifetime and spin/valley relaxation time. Here we demonstrate a very efficient spin/valley optical pumping of resident electrons in n-doped WSe2 and WS2 monolayers. We observe that, using a continuous wave laser and appropriate doping and excitation densities, negative trion doublet lines exhibit circular polarization of opposite sign and the photoluminescence intensity of the triplet trion is more than four times larger with circular excitation than with linear excitation. We interpret our results as a consequence of a large dynamic polarization of resident electrons using circular light.

3.
Nat Commun ; 12(1): 871, 2021 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-33558508

RESUMEN

The monolayer transition metal dichalcogenides are an emergent semiconductor platform exhibiting rich excitonic physics with coupled spin-valley degree of freedom and optical addressability. Here, we report a new series of low energy excitonic emission lines in the photoluminescence spectrum of ultraclean monolayer WSe2. These excitonic satellites are composed of three major peaks with energy separations matching known phonons, and appear only with electron doping. They possess homogenous spatial and spectral distribution, strong power saturation, and anomalously long population (>6 µs) and polarization lifetimes (>100 ns). Resonant excitation of the free inter- and intravalley bright trions leads to opposite optical orientation of the satellites, while excitation of the free dark trion resonance suppresses the satellites' photoluminescence. Defect-controlled crystal synthesis and scanning tunneling microscopy measurements provide corroboration that these features are dark excitons bound to dilute donors, along with associated phonon replicas. Our work opens opportunities to engineer homogenous single emitters and explore collective quantum optical phenomena using intrinsic donor-bound excitons in ultraclean 2D semiconductors.

4.
Nat Commun ; 11(1): 618, 2020 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-32001715

RESUMEN

The coupling between spin, charge, and lattice degrees of freedom plays an important role in a wide range of fundamental phenomena. Monolayer semiconducting transitional metal dichalcogenides have emerged as an outstanding platform for studying these coupling effects. Here, we report the observation of multiple valley phonons - phonons with momentum vectors pointing to the corners of the hexagonal Brillouin zone - and the resulting exciton complexes in the monolayer semiconductor WSe2. We find that these valley phonons lead to efficient intervalley scattering of quasi particles in both exciton formation and relaxation. This leads to a series of photoluminescence peaks as valley phonon replicas of dark trions. Using identified valley phonons, we also uncover an intervalley exciton near charge neutrality. Our work not only identifies a number of previously unknown 2D excitonic species, but also shows that monolayer WSe2 is a prime candidate for studying interactions between spin, pseudospin, and zone-edge phonons.

5.
Phys Rev Lett ; 122(21): 217401, 2019 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-31283327

RESUMEN

Photoluminescence experiments from monolayer transition-metal dichalcogenides often show that the binding energy of trions is conspicuously similar to the energy of optical phonons. This enigmatic coincidence calls into question whether phonons are involved in the radiative recombination process. We address this problem, unraveling an intriguing optical transition mechanism. Its initial state is a localized charge (electron or hole) and delocalized exciton. The final state is the localized charge, phonon, and photon. In between, the intermediate state of the system is a virtual trion formed when the localized charge captures the exciton through emission of the phonon. We analyze the difference between radiative recombinations that involve real and virtual trions (i.e., with and without a phonon), providing useful ways to distinguish between the two in experiment.

6.
J Phys Condens Matter ; 31(20): 203001, 2019 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-30763925

RESUMEN

Monolayer transition-metal dichalcogenides (ML-TMDs) offer exciting opportunities to test the manifestations of many-body interactions through changes in the charge density. The two-dimensional character and reduced screening in ML-TMDs lead to the formation of neutral and charged excitons with binding energies orders of magnitude larger than those in conventional bulk semiconductors. Tuning the charge density by a gate voltage leads to profound changes in the optical spectra of excitons in ML-TMDs. On the one hand, the increased screening at large charge densities should result in a blueshift of the exciton spectral lines due to reduction in the binding energy. On the other hand, exchange and correlation effects that shrink the band-gap energy at elevated charge densities (band-gap renormalization) should result in a redshift of the exciton spectral lines. While these competing effects can be captured through various approximations that model long-wavelength charge excitations in the Bethe-Salpeter equation, we show that a novel coupling between excitons and shortwave charge excitations is essential to resolve several experimental puzzles. Unlike ubiquitous and well-studied plasmons, driven by collective oscillations of the background charge density in the long-wavelength limit, we discuss the emergence of shortwave plasmons that originate from the short-range Coulomb interaction through which electrons transition between the [Formula: see text] and [Formula: see text] valleys. The shortwave plasmons have a finite energy-gap because of the removal of spin-degeneracy in both the valence- and conduction-band valleys (a consequence of breaking of inversion symmetry in combination with strong spin-orbit coupling in ML-TMDs). We study the coupling between the shortwave plasmons and the neutral exciton through the self-energy of the latter. We then elucidate how this coupling as well as the spin ordering in the conduction band give rise to an experimentally observed optical sideband in electron-doped W-based MLs, conspicuously absent in electron-doped Mo-based MLs or any hole-doped ML-TMDs. While the focus of this review is on the optical manifestations of many-body effects in ML-TMDs, a systematic description of the dynamical screening and its various approximations allow one to revisit other phenomena, such as nonequilibrium transport or superconducting pairing, where the use of the Bethe-Salpeter equation or the emergence of shortwave plasmons can play an important role.

7.
Nat Commun ; 7: 13372, 2016 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-27834365

RESUMEN

Future development in spintronic devices will require an advanced control of spin currents, for example by an electric field. Here we demonstrate an approach that differs from previous proposals such as the Datta and Das modulator, and that is based on a van de Waals heterostructure of atomically thin graphene and semiconducting MoS2. Our device combines the superior spin transport properties of graphene with the strong spin-orbit coupling of MoS2 and allows switching of the spin current in the graphene channel between ON and OFF states by tuning the spin absorption into the MoS2 with a gate electrode. Our proposal holds potential for technologically relevant applications such as search engines or pattern recognition circuits, and opens possibilities towards electrical injection of spins into transition metal dichalcogenides and alike materials.

8.
Phys Rev Lett ; 113(16): 167201, 2014 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-25361275

RESUMEN

The observed dependence of spin relaxation on the identity of the donor atom in n-type silicon has remained without explanation for decades and poses a long-standing open question with important consequences for modern spintronics. Taking into account the multivalley nature of the conduction band in silicon and germanium, we show that the spin-flip amplitude is dominated by short-range scattering off the central-cell potential of impurities after which the electron is transferred to a valley on a different axis in k space. Through symmetry arguments, we show that this spin-flip process can strongly affect the spin relaxation in all multivalley materials in which time-reversal cannot connect distinct valleys. From the physical insights gained from the theory, we provide guidelines to significantly enhance the spin lifetime in semiconductor spintronics devices.


Asunto(s)
Modelos Teóricos , Semiconductores , Silicio/química
9.
Phys Rev Lett ; 113(14): 146601, 2014 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-25325651

RESUMEN

Injection of spins into semiconductors is essential for the integration of the spin functionality into conventional electronics. Insulating layers are often inserted between ferromagnetic metals and semiconductors for obtaining an efficient spin injection, and it is therefore crucial to distinguish between signatures of electrical spin injection and impurity-driven effects in the tunnel barrier. Here we demonstrate an impurity-assisted tunneling magnetoresistance effect in nonmagnetic-insulator-nonmagnetic and ferromagnetic-insulator-nonmagnetic tunnel barriers. In both cases, the effect reflects on-off switching of the tunneling current through impurity channels by the external magnetic field. The reported effect is universal for any impurity-assisted tunneling process and provides an alternative interpretation to a widely used technique that employs the same ferromagnetic electrode to inject and detect spin accumulation.

10.
Phys Rev Lett ; 113(4): 047205, 2014 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-25105652

RESUMEN

We present a theory for resonance-tunneling magnetoresistance (MR) in ferromagnetic-insulator-nonmagnetic junctions. The theory sheds light on many of the recent electrical spin injection experiments, suggesting that this MR effect rather than spin accumulation in the nonmagnetic channel corresponds to the electrically detected signal. We quantify the dependence of the tunnel current on the magnetic field by quantum rate equations derived from the Anderson impurity model, with the important addition of impurity spin interactions. Considering the on-site Coulomb correlation, the MR effect is caused by competition between the field, spin interactions, and coupling to the magnetic lead. By extending the theory, we present a basis for operation of novel nanometer-size memories.

11.
Phys Rev Lett ; 111(2): 026601, 2013 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-23889426

RESUMEN

We present a theory that elucidates the major momentum and spin relaxation processes for electrons, holes, and hot excitons in monolayer transition-metal dichalcogenides. We expand on spin flips induced by flexural phonons and show that the spin relaxation is ultrafast for electrons in free-standing membranes while being mitigated in supported membranes. This behavior due to interaction with flexural phonons is universal in two-dimensional membranes that respect mirror symmetry, and it leads to a counterintuitive inverse relation between mobility and spin relaxation.

12.
Phys Rev Lett ; 111(25): 257204, 2013 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-24483755

RESUMEN

A unique spin depolarization mechanism, induced by the presence of g-factor anisotropy and intervalley scattering, is revealed by spin-transport measurements on long-distance germanium devices in a magnetic field longitudinal to the initial spin orientation. The confluence of electron-phonon scattering (leading to Elliott-Yafet spin flips) and this previously unobserved physics enables the extraction of spin lifetime solely from spin-valve measurements, without spin precession, and in a regime of substantial electric-field-generated carrier heating. We find spin lifetimes in Ge up to several hundreds of nanoseconds at low temperature, far beyond any other available experimental results.

13.
Nat Nanotechnol ; 7(11): 692-3, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23042492
14.
Phys Rev Lett ; 108(15): 157201, 2012 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-22587278

RESUMEN

We show that the electric-field-induced thermal asymmetry between the electron and lattice systems in pure silicon substantially impacts the identity of the dominant spin relaxation mechanism. Comparison of empirical results from long-distance spin transport devices with detailed Monte Carlo simulations confirms a strong spin depolarization beyond what is expected from the standard Elliott-Yafet theory even at low temperatures. The enhanced spin-flip mechanism is attributed to phonon emission processes during which electrons are scattered between conduction band valleys that reside on different crystal axes. This leads to anomalous behavior, where (beyond a critical field) reduction of the transit time between spin-injector and spin-detector is accompanied by a counterintuitive reduction in spin polarization and an apparent negative spin lifetime.

15.
Phys Rev Lett ; 107(10): 107202, 2011 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-21981523

RESUMEN

We study reflection of optically spin-oriented hot electrons as a means to probe the semiconductor crystal symmetry and its intimate relation with the spin-orbit coupling. The symmetry breaking by reflection manifests itself by tipping the net-spin vector of the photoexcited electrons out of the light propagation direction. The tipping angle and the pointing direction of the net-spin vector are set by the crystal-induced spin precession, momentum alignment, and spin-momentum correlation of the initial photoexcited electron population. We examine nonmagnetic semiconductor heterostructures and semiconductor-ferromagnet systems and show the unique signatures of these effects.

16.
Phys Rev Lett ; 107(10): 107203, 2011 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-21981524

RESUMEN

We derive a spin-dependent Hamiltonian that captures the symmetry of the zone edge states in silicon. We present analytical expressions of the spin-dependent states and of spin relaxation due to electron-phonon interactions in the multivalley conduction band. We find excellent agreement with experimental results. Similar to the usage of the Kane Hamiltonian in direct band-gap semiconductors, the new Hamiltonian can be used to study spin properties of electrons in silicon.

17.
Nat Mater ; 10(9): 647-8, 2011 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-21860400
18.
Phys Rev Lett ; 105(3): 037204, 2010 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-20867800

RESUMEN

Silicon is an ideal material choice for spintronics devices due to its relatively long spin relaxation time and mature technology. To date, however, there are no parameter-free methods to accurately determine the degree of spin polarization of electrons in silicon. This missing link is established with a theory that provides concise relations between the degrees of spin polarization and measured circular polarization for each of the dominant phonon-assisted optical transitions. The phonon symmetries play a key role in elucidating recent spin injection experiments in silicon.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...