Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Circulation ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38695173

RESUMEN

BACKGROUND: The ubiquitin-proteasome system regulates protein degradation and the development of pulmonary arterial hypertension (PAH), but knowledge about the role of deubiquitinating enzymes in this process is limited. UCHL1 (ubiquitin carboxyl-terminal hydrolase 1), a deubiquitinase, has been shown to reduce AKT1 (AKT serine/threonine kinase 1) degradation, resulting in higher levels. Given that AKT1 is pathological in pulmonary hypertension, we hypothesized that UCHL1 deficiency attenuates PAH development by means of reductions in AKT1. METHODS: Tissues from animal pulmonary hypertension models as well as human pulmonary artery endothelial cells from patients with PAH exhibited increased vascular UCHL1 staining and protein expression. Exposure to LDN57444, a UCHL1-specific inhibitor, reduced human pulmonary artery endothelial cell and smooth muscle cell proliferation. Across 3 preclinical PAH models, LDN57444-exposed animals, Uchl1 knockout rats (Uchl1-/-), and conditional Uchl1 knockout mice (Tie2Cre-Uchl1fl/fl) demonstrated reduced right ventricular hypertrophy, right ventricular systolic pressures, and obliterative vascular remodeling. Lungs and pulmonary artery endothelial cells isolated from Uchl1-/- animals exhibited reduced total and activated Akt with increased ubiquitinated Akt levels. UCHL1-silenced human pulmonary artery endothelial cells displayed reduced lysine(K)63-linked and increased K48-linked AKT1 levels. RESULTS: Supporting experimental data, we found that rs9321, a variant in a GC-enriched region of the UCHL1 gene, is associated with reduced methylation (n=5133), increased UCHL1 gene expression in lungs (n=815), and reduced cardiac index in patients (n=796). In addition, Gadd45α (an established demethylating gene) knockout mice (Gadd45α-/-) exhibited reduced lung vascular UCHL1 and AKT1 expression along with attenuated hypoxic pulmonary hypertension. CONCLUSIONS: Our findings suggest that UCHL1 deficiency results in PAH attenuation by means of reduced AKT1, highlighting a novel therapeutic pathway in PAH.

2.
bioRxiv ; 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38464060

RESUMEN

Vascular inflammation critically regulates endothelial cell (EC) pathophenotypes, particularly in pulmonary arterial hypertension (PAH). Dysregulation of lysosomal activity and cholesterol metabolism have known inflammatory roles in disease, but their relevance to PAH is unclear. In human pulmonary arterial ECs and in PAH, we found that inflammatory cytokine induction of the nuclear receptor coactivator 7 (NCOA7) both preserved lysosomal acidification and served as a homeostatic brake to constrain EC immunoactivation. Conversely, NCOA7 deficiency promoted lysosomal dysfunction and proinflammatory oxysterol/bile acid generation that, in turn, contributed to EC pathophenotypes. In vivo, mice deficient for Ncoa7 or exposed to the inflammatory bile acid 7α-hydroxy-3-oxo-4-cholestenoic acid (7HOCA) displayed worsened PAH. Emphasizing this mechanism in human PAH, an unbiased, metabolome-wide association study (N=2,756) identified a plasma signature of the same NCOA7-dependent oxysterols/bile acids associated with PAH mortality (P<1.1x10-6). Supporting a genetic predisposition to NCOA7 deficiency, in genome-edited, stem cell-derived ECs, the common variant intronic SNP rs11154337 in NCOA7 regulated NCOA7 expression, lysosomal activity, oxysterol/bile acid production, and EC immunoactivation. Correspondingly, SNP rs11154337 was associated with PAH severity via six-minute walk distance and mortality in discovery (N=93, P=0.0250; HR=0.44, 95% CI [0.21-0.90]) and validation (N=630, P=2x10-4; HR=0.49, 95% CI [0.34-0.71]) cohorts. Finally, utilizing computational modeling of small molecule binding to NCOA7, we predicted and synthesized a novel activator of NCOA7 that prevented EC immunoactivation and reversed indices of rodent PAH. In summary, we have established a genetic and metabolic paradigm and a novel therapeutic agent that links lysosomal biology as well as oxysterol and bile acid processes to EC inflammation and PAH pathobiology. This paradigm carries broad implications for diagnostic and therapeutic development in PAH and in other conditions dependent upon acquired and innate immune regulation of vascular disease.

3.
bioRxiv ; 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38328113

RESUMEN

Pulmonary arterial hypertension (PAH) is a rare and fatal vascular disease with heterogeneous clinical manifestations. To date, molecular determinants underlying the development of PAH and related outcomes remain poorly understood. Herein, we identify pulmonary primary oxysterol and bile acid synthesis (PPOBAS) as a previously unrecognized pathway central to PAH pathophysiology. Mass spectrometry analysis of 2,756 individuals across five independent studies revealed 51 distinct circulating metabolites that predicted PAH-related mortality and were enriched within the PPOBAS pathway. Across independent single-center PAH studies, PPOBAS pathway metabolites were also associated with multiple cardiopulmonary measures of PAH-specific pathophysiology. Furthermore, PPOBAS metabolites were found to be increased in human and rodent PAH lung tissue and specifically produced by pulmonary endothelial cells, consistent with pulmonary origin. Finally, a poly-metabolite risk score comprising 13 PPOBAS molecules was found to not only predict PAH-related mortality but also outperform current clinical risk scores. This work identifies PPOBAS as specifically altered within PAH and establishes needed prognostic biomarkers for guiding therapy in PAH.

4.
Sci Transl Med ; 16(729): eadd2029, 2024 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-38198571

RESUMEN

Hypoxic reprogramming of vasculature relies on genetic, epigenetic, and metabolic circuitry, but the control points are unknown. In pulmonary arterial hypertension (PAH), a disease driven by hypoxia inducible factor (HIF)-dependent vascular dysfunction, HIF-2α promoted expression of neighboring genes, long noncoding RNA (lncRNA) histone lysine N-methyltransferase 2E-antisense 1 (KMT2E-AS1) and histone lysine N-methyltransferase 2E (KMT2E). KMT2E-AS1 stabilized KMT2E protein to increase epigenetic histone 3 lysine 4 trimethylation (H3K4me3), driving HIF-2α-dependent metabolic and pathogenic endothelial activity. This lncRNA axis also increased HIF-2α expression across epigenetic, transcriptional, and posttranscriptional contexts, thus promoting a positive feedback loop to further augment HIF-2α activity. We identified a genetic association between rs73184087, a single-nucleotide variant (SNV) within a KMT2E intron, and disease risk in PAH discovery and replication patient cohorts and in a global meta-analysis. This SNV displayed allele (G)-specific association with HIF-2α, engaged in long-range chromatin interactions, and induced the lncRNA-KMT2E tandem in hypoxic (G/G) cells. In vivo, KMT2E-AS1 deficiency protected against PAH in mice, as did pharmacologic inhibition of histone methylation in rats. Conversely, forced lncRNA expression promoted more severe PH. Thus, the KMT2E-AS1/KMT2E pair orchestrates across convergent multi-ome landscapes to mediate HIF-2α pathobiology and represents a key clinical target in pulmonary hypertension.


Asunto(s)
Hipertensión Pulmonar , ARN Largo no Codificante , Humanos , Ratas , Animales , Ratones , Alelos , Hipertensión Pulmonar/genética , Histonas , ARN Largo no Codificante/genética , Roedores , Lisina , Hipertensión Pulmonar Primaria Familiar , Hipoxia/genética , Metiltransferasas , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética
5.
J Cardiol ; 83(2): 121-129, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37579872

RESUMEN

BACKGROUND: Lung ultrasound congestion scoring (LUS-CS) is a congestion severity biomarker. The BLUSHED-AHF trial demonstrated feasibility for LUS-CS-guided therapy in acute heart failure (AHF). We investigated two questions: 1) does change (∆) in LUS-CS from emergency department (ED) to hospital-discharge predict patient outcomes, and 2) is the relationship between in-hospital decongestion and adverse events moderated by baseline risk-factors at admission? METHODS: We performed a secondary analysis of 933 observations/128 patients from 5 hospitals in the BLUSHED-AHF trial receiving daily LUS. ∆LUS-CS from ED arrival to inpatient discharge (scale -160 to +160, where negative = improving congestion) was compared to a primary outcome of 30-day death/AHF-rehospitalization. Cox regression was used to adjust for mortality risk at admission [Get-With-The-Guidelines HF risk score (GWTG-RS)] and the discharge LUS-CS. An interaction between ∆LUS-CS and GWTG-RS was included, under the hypothesis that the association between decongestion intensity (by ∆LUS-CS) and adverse outcomes would be stronger in admitted patients with low-mortality risk but high baseline congestion. RESULTS: Median age was 65 years, GWTG-RS 36, left ventricular ejection fraction 36 %, and ∆LUS-CS -20. In the multivariable analysis ∆LUS-CS was associated with event-free survival (HR = 0.61; 95 % CI: 0.38-0.97), while discharge LUS-CS (HR = 1.00; 95%CI: 0.54-1.84) did not add incremental prognostic value to ∆LUS-CS alone. As GWTG-RS rose, benefits of LUS-CS reduction attenuated (interaction p < 0.05). ∆LUS-CS and event-free survival were most strongly correlated in patients without tachycardia, tachypnea, hypotension, hyponatremia, uremia, advanced age, or history of myocardial infarction at ED/baseline, and those with low daily loop diuretic requirements. CONCLUSIONS: Reduction in ∆LUS-CS during AHF treatment was most associated with improved readmission-free survival in heavily congested patients with otherwise reassuring features at admission. ∆LUS-CS may be most useful as a measure to ensure adequate decongestion prior to discharge, to prevent early readmission, rather than modify survival.


Asunto(s)
Insuficiencia Cardíaca , Edema Pulmonar , Anciano , Humanos , Pulmón/diagnóstico por imagen , Pronóstico , Volumen Sistólico , Función Ventricular Izquierda
6.
Pulm Circ ; 13(4): e12304, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37927610

RESUMEN

Pulmonary arterial hypertension (PAH) is a rare, complex, and deadly cardiopulmonary disease. It is characterized by changes in endothelial cell function and smooth muscle cell proliferation in the pulmonary arteries, causing persistent vasoconstriction, resulting in right heart hypertrophy and failure. There are multiple drug classes specific to PAH treatment, but variation between patients may impact treatment response. A small subset of patients is responsive to pulmonary vasodilators and can be treated with calcium channel blockers, which would be deleterious if prescribed to a typical PAH patient. Little is known about the underlying cause of this important difference in vasoresponsive PAH patients. Sex, race/ethnicity, and pharmacogenomics may also factor into efficacy and safety of PAH-specific drugs. Research has indicated that endothelin receptor antagonists may be more effective in women and there have been some minor differences found in certain races and ethnicities, but these findings are muddled by the impact of socioeconomic factors and a lack of representation of non-White patients in clinical trials. Genetic variants in genes such as CYP3A5, CYP2C9, PTGIS, PTGIR, GNG2, CHST3, and CHST13 may influence the efficacy and safety of certain PAH-specific drugs. PAH research faces many challenges, but there is potential for new methodologies to glean new insights into PAH development and treatment.

8.
JACC Basic Transl Sci ; 8(3): 340-355, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37034289

RESUMEN

Apolipoprotein M (ApoM) binds sphingosine-1-phosphate (S1P) and is inversely associated with mortality in human heart failure (HF). Here, we show that anthracyclines such as doxorubicin (Dox) reduce circulating ApoM in mice and humans, that ApoM is inversely associated with mortality in patients with anthracycline-induced heart failure, and ApoM heterozygosity in mice increases Dox-induced mortality. In the setting of Dox stress, our studies suggest ApoM can help sustain myocardial autophagic flux in a post-transcriptional manner, attenuate Dox cardiotoxicity, and prevent lysosomal injury.

9.
Pulm Circ ; 13(2): e12227, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37101805

RESUMEN

Pulmonary hypertension (PH) is associated with significant morbidity and mortality. RASA3 is a GTPase activating protein integral to angiogenesis and endothelial barrier function. In this study, we explore the association of RASA3 genetic variation with PH risk in patients with sickle cell disease (SCD)-associated PH and pulmonary arterial hypertension (PAH). Cis-expression quantitative trait loci (eQTL) were queried for RASA3 using whole genome genotype arrays and gene expression profiles derived from peripheral blood mononuclear cells (PBMC) of three SCD cohorts. Genome-wide single nucleotide polymorphisms (SNPs) near or in the RASA3 gene that may associate with lung RASA3 expression were identified, reduced to 9 tagging SNPs for RASA3 and associated with markers of PH. Associations between the top RASA3 SNP and PAH severity were corroborated using data from the PAH Biobank and analyzed based on European or African ancestry (EA, AA). We found that PBMC RASA3 expression was lower in patients with SCD-associated PH as defined by echocardiography and right heart catheterization and was associated with higher mortality. One eQTL for RASA3 (rs9525228) was identified, with the risk allele correlating with PH risk, higher tricuspid regurgitant jet velocity and higher pulmonary vascular resistance in patients with SCD-associated PH. rs9525228 associated with markers of precapillary PH and decreased survival in individuals of EA but not AA. In conclusion, RASA3 is a novel candidate gene in SCD-associated PH and PAH, with RASA3 expression appearing to be protective. Further studies are ongoing to delineate the role of RASA3 in PH.

10.
Signal Transduct Target Ther ; 8(1): 108, 2023 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-36894537

RESUMEN

Cardiopulmonary complications are major drivers of mortality caused by the SARS-CoV-2 virus. Interleukin-18, an inflammasome-induced cytokine, has emerged as a novel mediator of cardiopulmonary pathologies but its regulation via SARS-CoV-2 signaling remains unknown. Based on a screening panel, IL-18 was identified amongst 19 cytokines to stratify mortality and hospitalization burden in patients hospitalized with COVID-19. Supporting clinical data, administration of SARS-CoV-2 Spike 1 (S1) glycoprotein or receptor-binding domain (RBD) proteins into human angiotensin-converting enzyme 2 (hACE2) transgenic mice induced cardiac fibrosis and dysfunction associated with higher NF-κB phosphorylation (pNF-κB) and cardiopulmonary-derived IL-18 and NLRP3 expression. IL-18 inhibition via IL-18BP resulted in decreased cardiac pNF-κB and improved cardiac fibrosis and dysfunction in S1- or RBD-exposed hACE2 mice. Through in vivo and in vitro work, both S1 and RBD proteins induced NLRP3 inflammasome and IL-18 expression by inhibiting mitophagy and increasing mitochondrial reactive oxygenation species. Enhancing mitophagy prevented Spike protein-mediated IL-18 expression. Moreover, IL-18 inhibition reduced Spike protein-mediated pNF-κB and EC permeability. Overall, the link between reduced mitophagy and inflammasome activation represents a novel mechanism during COVID-19 pathogenesis and suggests IL-18 and mitophagy as potential therapeutic targets.


Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Humanos , Ratones , Animales , Glicoproteína de la Espiga del Coronavirus/metabolismo , SARS-CoV-2/metabolismo , COVID-19/genética , Inflamasomas/genética , Inflamasomas/metabolismo , Interleucina-18/genética , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Mitofagia/genética , Inflamación/genética , Inflamación/metabolismo , Citocinas
11.
Am J Respir Crit Care Med ; 207(8): 1055-1069, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36913491

RESUMEN

Rationale: Genetic studies suggest that SOX17 (SRY-related HMG-box 17) deficiency increases pulmonary arterial hypertension (PAH) risk. Objectives: On the basis of pathological roles of estrogen and HIF2α (hypoxia-inducible factor 2α) signaling in pulmonary artery endothelial cells (PAECs), we hypothesized that SOX17 is a target of estrogen signaling that promotes mitochondrial function and attenuates PAH development via HIF2α inhibition. Methods: We used metabolic (Seahorse) and promoter luciferase assays in PAECs together with the chronic hypoxia murine model to test the hypothesis. Measurements and Main Results: Sox17 expression was reduced in PAH tissues (rodent models and from patients). Chronic hypoxic pulmonary hypertension was exacerbated by mice with conditional Tie2-Sox17 (Sox17EC-/-) deletion and attenuated by transgenic Tie2-Sox17 overexpression (Sox17Tg). On the basis of untargeted proteomics, metabolism was the top pathway altered by SOX17 deficiency in PAECs. Mechanistically, we found that HIF2α concentrations were increased in the lungs of Sox17EC-/- and reduced in those from Sox17Tg mice. Increased SOX17 promoted oxidative phosphorylation and mitochondrial function in PAECs, which were partly attenuated by HIF2α overexpression. Rat lungs in males displayed higher Sox17 expression versus females, suggesting repression by estrogen signaling. Supporting 16α-hydroxyestrone (16αOHE; a pathologic estrogen metabolite)-mediated repression of SOX17 promoter activity, Sox17Tg mice attenuated 16αOHE-mediated exacerbations of chronic hypoxic pulmonary hypertension. Finally, in adjusted analyses in patients with PAH, we report novel associations between a SOX17 risk variant, rs10103692, and reduced plasma citrate concentrations (n = 1,326). Conclusions: Cumulatively, SOX17 promotes mitochondrial bioenergetics and attenuates PAH, in part, via inhibition of HIF2α. 16αOHE mediates PAH development via downregulation of SOX17, linking sexual dimorphism and SOX17 genetics in PAH.


Asunto(s)
Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Masculino , Ratas , Femenino , Ratones , Animales , Hipertensión Pulmonar/metabolismo , Células Endoteliales/metabolismo , Pulmón , Arteria Pulmonar , Hipoxia/complicaciones , Estrógenos , Hipertensión Arterial Pulmonar/metabolismo , Hipertensión Pulmonar Primaria Familiar/complicaciones , Proteínas HMGB/metabolismo , Factores de Transcripción SOXF/genética
12.
bioRxiv ; 2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36712057

RESUMEN

Pulmonary arterial hypertension (PAH) remains an incurable and often fatal disease despite currently available therapies. Multiomics systems biology analysis can shed new light on PAH pathobiology and inform translational research efforts. Using RNA sequencing on the largest PAH lung biobank to date (96 disease and 52 control), we aim to identify gene co-expression network modules associated with PAH and potential therapeutic targets. Co-expression network analysis was performed to identify modules of co-expressed genes which were then assessed for and prioritized by importance in PAH, regulatory role, and therapeutic potential via integration with clinicopathologic data, human genome-wide association studies (GWAS) of PAH, lung Bayesian regulatory networks, single-cell RNA-sequencing data, and pharmacotranscriptomic profiles. We identified a co-expression module of 266 genes, called the pink module, which may be a response to the underlying disease process to counteract disease progression in PAH. This module was associated not only with PAH severity such as increased PVR and intimal thickness, but also with compensated PAH such as lower number of hospitalizations, WHO functional class and NT-proBNP. GWAS integration demonstrated the pink module is enriched for PAH-associated genetic variation in multiple cohorts. Regulatory network analysis revealed that BMPR2 regulates the main target of FDA-approved riociguat, GUCY1A2, in the pink module. Analysis of pathway enrichment and pink hub genes (i.e. ANTXR1 and SFRP4) suggests the pink module inhibits Wnt signaling and epithelial-mesenchymal transition. Cell type deconvolution showed the pink module correlates with higher vascular cell fractions (i.e. myofibroblasts). A pharmacotranscriptomic screen discovered ubiquitin-specific peptidases (USPs) as potential therapeutic targets to mimic the pink module signature. Our multiomics integrative study uncovered a novel gene subnetwork associated with clinicopathologic severity, genetic risk, specific vascular cell types, and new therapeutic targets in PAH. Future studies are warranted to investigate the role and therapeutic potential of the pink module and targeting USPs in PAH.

13.
Chest ; 163(1): 204-215, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36087794

RESUMEN

BACKGROUND: The prognosis and therapeutic responses are worse for pulmonary arterial hypertension associated with systemic sclerosis (SSc-PAH) compared with idiopathic pulmonary arterial hypertension (IPAH). This discrepancy could be driven by divergence in underlying metabolic determinants of disease. RESEARCH QUESTION: Are circulating bioactive metabolites differentially altered in SSc-PAH vs IPAH, and can this alteration explain clinical disparity between these PAH subgroups? STUDY DESIGN AND METHODS: Plasma biosamples from 400 patients with SSc-PAH and 1,082 patients with IPAH were included in the study. Another cohort of 100 patients with scleroderma with no PH and 44 patients with scleroderma with PH was included for external validation. More than 700 bioactive lipid metabolites, representing a range of vasoactive and immune-inflammatory pathways, were assayed in plasma samples from independent discovery and validation cohorts using liquid chromatography/high-resolution mass spectrometry-based approaches. Regression analyses were used to identify metabolites that exhibited differential levels between SSc-PAH and IPAH and associated with disease severity. RESULTS: From hundreds of circulating bioactive lipid molecules, five metabolites were found to distinguish between SSc-PAH and IPAH, as well as associate with markers of disease severity. Relative to IPAH, patients with SSc-PAH carried increased levels of fatty acid metabolites, including lignoceric acid and nervonic acid, as well as eicosanoids/oxylipins and sex hormone metabolites. INTERPRETATION: Patients with SSc-PAH are characterized by an unfavorable bioactive metabolic profile that may explain the poor and limited response to therapy. These data provide important metabolic insights into the molecular heterogeneity underlying differences between subgroups of PAH.


Asunto(s)
Hipertensión Pulmonar , Esclerodermia Sistémica , Humanos , Hipertensión Pulmonar Primaria Familiar , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/complicaciones , Esclerodermia Sistémica/tratamiento farmacológico , Pronóstico , Lípidos/uso terapéutico
14.
Hematol Oncol Clin North Am ; 36(6): 1217-1237, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36400540

RESUMEN

Sickle cell disease (SCD) is a genetic hemoglobinopathy associated with extensive morbidity and early mortality. While there have been recent improvements in available disease-modifying therapies for SCD, cardiopulmonary complications remain a major risk factor for death in this population. We provide an overview of current knowledge regarding several of the major acute and chronic cardiopulmonary complications in SCD, including: acute chest syndrome, airway disease, lung function abnormalities, nocturnal hypoxemia and sleep disordered breathing, pulmonary vascular disease, and sickle cell cardiomyopathy.


Asunto(s)
Anemia de Células Falciformes , Síndromes de la Apnea del Sueño , Enfermedades Vasculares , Humanos , Anemia de Células Falciformes/complicaciones , Anemia de Células Falciformes/terapia , Anemia de Células Falciformes/genética , Síndromes de la Apnea del Sueño/complicaciones
16.
J Am Coll Cardiol ; 80(7): 697-718, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35953136

RESUMEN

BACKGROUND: PVDOMICS (Pulmonary Vascular Disease Phenomics) is a precision medicine initiative to characterize pulmonary vascular disease (PVD) using deep phenotyping. PVDOMICS tests the hypothesis that integration of clinical metrics with omic measures will enhance understanding of PVD and facilitate an updated PVD classification. OBJECTIVES: The purpose of this study was to describe clinical characteristics and transplant-free survival in the PVDOMICS cohort. METHODS: Subjects with World Symposium Pulmonary Hypertension (WSPH) group 1-5 PH, disease comparators with similar underlying diseases and mild or no PH and healthy control subjects enrolled in a cross-sectional study. PH groups, comparators were compared using standard statistical tests including log-rank tests for comparing time to transplant or death. RESULTS: A total of 1,193 subjects were included. Multiple WSPH groups were identified in 38.9% of PH subjects. Nocturnal desaturation was more frequently observed in groups 1, 3, and 4 PH vs comparators. A total of 50.2% of group 1 PH subjects had ground glass opacities on chest computed tomography. Diffusing capacity for carbon monoxide was significantly lower in groups 1-3 PH than their respective comparators. Right atrial volume index was higher in WSPH groups 1-4 than comparators. A total of 110 participants had a mean pulmonary artery pressure of 21-24 mm Hg. Transplant-free survival was poorest in group 3 PH. CONCLUSIONS: PVDOMICS enrolled subjects across the spectrum of PVD, including mild and mixed etiology PH. Novel findings include low diffusing capacity for carbon monoxide and enlarged right atrial volume index as shared features of groups 1-3 and 1-4 PH, respectively; unexpected, frequent presence of ground glass opacities on computed tomography; and sleep alterations in group 1 PH, and poorest survival in group 3 PH. PVDOMICS will facilitate a new understanding of PVD and refine the current PVD classification. (Pulmonary Vascular Disease Phenomics Program PVDOMICS [PVDOMICS]; NCT02980887).


Asunto(s)
Hipertensión Pulmonar , Enfermedades Vasculares , Monóxido de Carbono , Estudios Transversales , Humanos , Hipertensión Pulmonar/etiología , Circulación Pulmonar , Enfermedades Vasculares/complicaciones , Enfermedades Vasculares/diagnóstico , Enfermedades Vasculares/cirugía
17.
Am J Respir Crit Care Med ; 205(12): 1449-1460, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35394406

RESUMEN

Rationale: Pulmonary arterial hypertension (PAH) is characterized by structural remodeling of pulmonary arteries and arterioles. Underlying biological processes are likely reflected in a perturbation of circulating proteins. Objectives: To quantify and analyze the plasma proteome of patients with PAH using inherited genetic variation to inform on underlying molecular drivers. Methods: An aptamer-based assay was used to measure plasma proteins in 357 patients with idiopathic or heritable PAH, 103 healthy volunteers, and 23 relatives of patients with PAH. In discovery and replication subgroups, the plasma proteomes of PAH and healthy individuals were compared, and the relationship to transplantation-free survival in PAH was determined. To examine causal relationships to PAH, protein quantitative trait loci (pQTL) that influenced protein levels in the patient population were used as instruments for Mendelian randomization (MR) analysis. Measurements and Main Results: From 4,152 annotated plasma proteins, levels of 208 differed between patients with PAH and healthy subjects, and 49 predicted long-term survival. MR based on cis-pQTL located in proximity to the encoding gene for proteins that were prognostic and distinguished PAH from health estimated an adverse effect for higher levels of netrin-4 (odds ratio [OR], 1.55; 95% confidence interval [CI], 1.16-2.08) and a protective effect for higher levels of thrombospondin-2 (OR, 0.83; 95% CI, 0.74-0.94) on PAH. Both proteins tracked the development of PAH in previously healthy relatives and changes in thrombospondin-2 associated with pulmonary arterial pressure at disease onset. Conclusions: Integrated analysis of the plasma proteome and genome implicates two secreted matrix-binding proteins, netrin-4 and thrombospondin-2, in the pathobiology of PAH.


Asunto(s)
Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Proteínas Sanguíneas/genética , Hipertensión Pulmonar Primaria Familiar , Humanos , Netrinas , Patología Molecular , Proteoma , Trombospondinas
19.
Transl Res ; 247: 1-18, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35405322

RESUMEN

Pulmonary arterial hypertension (PAH) is a fatal disease with a well-established sexual dimorphism. Activated inflammatory response and altered redox homeostasis, both known to manifest in a sex-specific manner, are implicated in the pathogenic mechanisms involved in PAH development. This study aimed to evaluate the impact of sex and plasma redox status on circulating cytokine profiles. Plasma oxidation-reduction potential (ORP), as a substitute measure of redox status, was analyzed in male and female Group 1 PAH and healthy subjects. The profiles of 27 circulating cytokines were compared in 2 PAH groups exhibiting the highest and lowest quartile for plasma ORP, correlated with clinical parameters, and used to predict patient survival. The analysis of the PAH groups with the highest and lowest ORP revealed a correlation between elevated cytokine levels and increased oxidative stress in females. In contrast, in males, cytokine expressions were increased in the lower oxidative environment (except for IL-1b). Correlations of the increased cytokine expressions with PAH severity were highly sex-dependent and corresponded to the increase in PAH severity in males and less severe PAH in females. Machine learning algorithms trained on the combined cytokine and redox profiles allowed the prediction of PAH mortality with 80% accuracy. We conclude that the profile of circulating cytokines in PAH patients is redox- and sex-dependent, suggesting the vital need to stratify the patient cohort subjected to anti-inflammatory therapies. Combined cytokine and/or redox profiling showed promising value for predicting the patients' survival.


Asunto(s)
Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Citocinas/metabolismo , Femenino , Homeostasis , Humanos , Masculino , Oxidación-Reducción
20.
Sci Rep ; 12(1): 696, 2022 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-35027578

RESUMEN

Despite encouraging preclinical data, therapies to reduce ARDS mortality remains a globally unmet need, including during the COVID-19 pandemic. We previously identified extracellular nicotinamide phosphoribosyltransferase (eNAMPT) as a novel damage-associated molecular pattern protein (DAMP) via TLR4 ligation which regulates inflammatory cascade activation. eNAMPT is tightly linked to human ARDS by biomarker and genotyping studies in ARDS subjects. We now hypothesize that an eNAMPT-neutralizing mAb will significantly reduce the severity of ARDS lung inflammatory lung injury in diverse preclinical rat and porcine models. Sprague Dawley rats received eNAMPT mAb intravenously following exposure to intratracheal lipopolysaccharide (LPS) or to a traumatic blast (125 kPa) but prior to initiation of ventilator-induced lung injury (VILI) (4 h). Yucatan minipigs received intravenous eNAMPT mAb 2 h after initiation of septic shock and VILI (12 h). Each rat/porcine ARDS/VILI model was strongly associated with evidence of severe inflammatory lung injury with NFkB pathway activation and marked dysregulation of the Akt/mTORC2 signaling pathway. eNAMPT neutralization dramatically reduced inflammatory indices and the severity of lung injury in each rat/porcine ARDS/VILI model (~ 50% reduction) including reduction in serum lactate, and plasma levels of eNAMPT, IL-6, TNFα and Ang-2. The eNAMPT mAb further rectified NFkB pathway activation and preserved the Akt/mTORC2 signaling pathway. These results strongly support targeting the eNAMPT/TLR4 inflammatory pathway as a potential ARDS strategy to reduce inflammatory lung injury and ARDS mortality.


Asunto(s)
Síndrome Torácico Agudo/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , FN-kappa B/metabolismo , Nicotinamida Fosforribosiltransferasa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/fisiología , Animales , Anticuerpos Neutralizantes/metabolismo , Biomarcadores/metabolismo , COVID-19/metabolismo , Modelos Animales de Enfermedad , Inflamación/metabolismo , Lipopolisacáridos/metabolismo , Pulmón/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley , SARS-CoV-2/patogenicidad , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...