Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Hered ; 99(2): 182-6, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18296391

RESUMEN

Quantitative variation for leaf trichome number is observed within and among Gossypium species, varying from glabrous to densely pubescent phenotypes. Moreover, economically important cotton lint fibers are modified trichomes. Earlier studies have mapped quantitative trait loci (QTLs) affecting leaf pubescence in Gossypium using allotetraploids. In this study, we mapped genes responsible for leaf trichome density in a diploid A genome cross. We were able to map 3 QTLs affecting leaf pubescence based on trichome counts obtained from young leaves (YL) and mature leaves (ML). When the F(2) progeny were classified as pubescent versus glabrous, their ratio did not deviate significantly from a 3:1 model, suggesting that glabrousness is inherited in a simple Mendelian fashion. The glabrous mutation mapped to linkage group A3 at the position of major QTL YL1 and ML1 and appeared orthologous to the t1 locus of the allotetraploids. Interestingly, a fiber mutation, sma-4(ha), observed in the same F(2) population cosegregated with the glabrous marker, which indicates either close linkage or common genetic control of lint fiber and leaf trichomes. Studies of A genome diploids may help to clarify the genetic control of trichomes and fiber in both diploid and tetraploid cottons.


Asunto(s)
Diploidia , Gossypium/genética , Mutación , Poliploidía
2.
Plant Physiol ; 146(1): 189-99, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17993541

RESUMEN

Transposon insertional mutagenesis is an effective alternative to T-DNA mutagenesis when transformation through tissue culture is inefficient as is the case for many crop species. When used as activation tags, transposons can be exploited to generate novel gain-of-function phenotypes without transformation and are of particular value in the study of polyploid plants where gene knockouts will not have phenotypes. We have developed an in cis-activation-tagging Ac-Ds transposon system in which a T-DNA vector carries a Dissociation (Ds) element containing 4x cauliflower mosaic virus enhancers along with the Activator (Ac) transposase gene. Stable Ds insertions were selected using green fluorescent protein and red fluorescent protein genes driven by promoters that are functional in maize (Zea mays) and rice (Oryza sativa). The system has been tested in rice, where 638 stable Ds insertions were selected from an initial set of 26 primary transformants. By analysis of 311 flanking sequences mapped to the rice genome, we could demonstrate the wide distribution of the elements over the rice chromosomes. Enhanced expression of rice genes adjacent to Ds insertions was detected in the insertion lines using semiquantitative reverse transcription-PCR method. The in cis-two-element vector system requires minimal number of primary transformants and eliminates the need for crossing, while the use of fluorescent markers instead of antibiotic or herbicide resistance increases the applicability to other plants and eliminates problems with escapes. Because Ac-Ds has been shown to transpose widely in the plant kingdom, the activation vector system developed in this study should be of utility more generally to other monocots.


Asunto(s)
Elementos Transponibles de ADN/genética , Vectores Genéticos , Genoma de Planta/genética , Genómica/métodos , Poaceae/genética , Oryza/genética , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética
3.
Genome ; 49(4): 336-45, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16699553

RESUMEN

The genus Gossypium, which comprises a divergent group of diploid species and several recently formed allotetraploids, offers an excellent opportunity to study polyploid genome evolution. In this study, chromosome structural variation among the A, At, and D genomes of Gossypium was evaluated by comparative genetic linkage mapping. We constructed a fully resolved RFLP linkage map for the diploid A genome consisting of 275 loci using an F2 interspecific Gossypium arboreum x Gossypium herbaceum family. The 13 chromosomes of the A genome are represented by 12 large linkage groups in our map, reflecting an expected interchromosomal translocation between G. arboreum and G. herbaceum. The A-genome chromosomes are largely collinear with the D genomes, save for a few small inversions. Although the 2 diploid mapping parents represent the closest living relatives of the allotetraploid At-genome progenitor, 2 translocations and 7 inversions were observed between the A and At genomes. The recombination rates are similar between the 2 diploid genomes; however, the At genome shows a 93% increase in recombination relative to its diploid progenitors. Elevated recombination in the Dt genome was reported previously. These data on the At genome thus indicate that elevated recombination was a general property of allotetraploidy in cotton.


Asunto(s)
Cromosomas de las Plantas/metabolismo , Dosificación de Gen , Genoma de Planta , Gossypium/genética , Inversión Cromosómica , Mapeo Cromosómico/métodos , Segregación Cromosómica , Genes Duplicados , Ligamiento Genético , Marcadores Genéticos , Polimorfismo de Longitud del Fragmento de Restricción , Sintenía , Translocación Genética
4.
Theor Appl Genet ; 111(6): 1137-46, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16075204

RESUMEN

Mapping of genes that play major roles in cotton fiber development is an important step toward their cloning and manipulation, and provides a test of their relationships (if any) to agriculturally-important QTLs. Seven previously identified fiber mutants, four dominant (Li (1), Li (2), N (1) and Fbl) and three recessive (n (2), sma-4(h (a)), and sma-4(fz)), were genetically mapped in six F(2) populations comprising 124 or more plants each. For those mutants previously assigned to chromosomes by using aneuploids or by linkage to other morphological markers, all map locations were concordant except n (2), which mapped to the homoeolog of the chromosome previously reported. Three mutations with primary effects on fuzz fibers (N (1), Fbl, n (2)) mapped near the likelihood peaks for QTLs that affected lint fiber productivity in the same populations, perhaps suggesting pleiotropic effects on both fiber types. However, only Li (1) mapped within the likelihood interval for 191 previously detected lint fiber QTLs discovered in non-mutant crosses, suggesting that these mutations may occur in genes that played early roles in cotton fiber evolution, and for which new allelic variants are quickly eliminated from improved germplasm. A close positional association between sma-4(h ( a )), two leaf and stem-borne trichome mutants (t (1) , t (2)), and a gene previously implicated in fiber development, sucrose synthase, raises questions about the possibility that these genes may be functionally related. Increasing knowledge of the correspondence of the cotton and Arabidopsis genomes provides several avenues by which genetic dissection of cotton fiber development may be accelerated.


Asunto(s)
Mapeo Cromosómico , Fibra de Algodón , Gossypium/genética , Mutación/genética , Fenotipo , Semillas/genética , Cruzamientos Genéticos , Sitios de Carácter Cuantitativo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA