Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Acta Neuropathol ; 147(1): 85, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38758238

RESUMEN

Pituitary neuroendocrine tumors (PitNETs) exhibiting aggressive, treatment-refractory behavior are the rare subset that progress after surgery, conventional medical therapies, and an initial course of radiation and are characterized by unrelenting growth and/or metastatic dissemination. Two groups of patients with PitNETs were sequenced: a prospective group of patients (n = 66) who consented to sequencing prior to surgery and a retrospective group (n = 26) comprised of aggressive/higher risk PitNETs. A higher mutational burden and fraction of loss of heterozygosity (LOH) was found in the aggressive, treatment-refractory PitNETs compared to the benign tumors (p = 1.3 × 10-10 and p = 8.5 × 10-9, respectively). Within the corticotroph lineage, a characteristic pattern of recurrent chromosomal LOH in 12 specific chromosomes was associated with treatment-refractoriness (occurring in 11 of 14 treatment-refractory versus 1 of 14 benign corticotroph PitNETs, p = 1.7 × 10-4). Across the cohort, a higher fraction of LOH was identified in tumors with TP53 mutations (p = 3.3 × 10-8). A machine learning approach identified loss of heterozygosity as the most predictive variable for aggressive, treatment-refractory behavior, outperforming the most common gene-level alteration, TP53, with an accuracy of 0.88 (95% CI: 0.70-0.96). Aggressive, treatment-refractory PitNETs are characterized by significant aneuploidy due to widespread chromosomal LOH, most prominently in the corticotroph tumors. This LOH predicts treatment-refractoriness with high accuracy and represents a novel biomarker for this poorly defined PitNET category.


Asunto(s)
Pérdida de Heterocigocidad , Tumores Neuroendocrinos , Neoplasias Hipofisarias , Humanos , Pérdida de Heterocigocidad/genética , Neoplasias Hipofisarias/genética , Neoplasias Hipofisarias/patología , Tumores Neuroendocrinos/genética , Tumores Neuroendocrinos/patología , Tumores Neuroendocrinos/terapia , Masculino , Femenino , Persona de Mediana Edad , Adulto , Anciano , Estudios Retrospectivos , Mutación/genética , Estudios Prospectivos
2.
Nat Med ; 30(5): 1320-1329, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38480922

RESUMEN

Recurrent glioblastoma (rGBM) remains a major unmet medical need, with a median overall survival of less than 1 year. Here we report the first six patients with rGBM treated in a phase 1 trial of intrathecally delivered bivalent chimeric antigen receptor (CAR) T cells targeting epidermal growth factor receptor (EGFR) and interleukin-13 receptor alpha 2 (IL13Rα2). The study's primary endpoints were safety and determination of the maximum tolerated dose. Secondary endpoints reported in this interim analysis include the frequency of manufacturing failures and objective radiographic response (ORR) according to modified Response Assessment in Neuro-Oncology criteria. All six patients had progressive, multifocal disease at the time of treatment. In both dose level 1 (1 ×107 cells; n = 3) and dose level 2 (2.5 × 107 cells; n = 3), administration of CART-EGFR-IL13Rα2 cells was associated with early-onset neurotoxicity, most consistent with immune effector cell-associated neurotoxicity syndrome (ICANS), and managed with high-dose dexamethasone and anakinra (anti-IL1R). One patient in dose level 2 experienced a dose-limiting toxicity (grade 3 anorexia, generalized muscle weakness and fatigue). Reductions in enhancement and tumor size at early magnetic resonance imaging timepoints were observed in all six patients; however, none met criteria for ORR. In exploratory endpoint analyses, substantial CAR T cell abundance and cytokine release in the cerebrospinal fluid were detected in all six patients. Taken together, these first-in-human data demonstrate the preliminary safety and bioactivity of CART-EGFR-IL13Rα2 cells in rGBM. An encouraging early efficacy signal was also detected and requires confirmation with additional patients and longer follow-up time. ClinicalTrials.gov identifier: NCT05168423 .


Asunto(s)
Receptores ErbB , Glioblastoma , Inmunoterapia Adoptiva , Subunidad alfa2 del Receptor de Interleucina-13 , Receptores Quiméricos de Antígenos , Humanos , Glioblastoma/terapia , Glioblastoma/inmunología , Glioblastoma/diagnóstico por imagen , Glioblastoma/patología , Subunidad alfa2 del Receptor de Interleucina-13/inmunología , Persona de Mediana Edad , Masculino , Receptores Quiméricos de Antígenos/inmunología , Femenino , Inmunoterapia Adoptiva/efectos adversos , Inmunoterapia Adoptiva/métodos , Recurrencia Local de Neoplasia/inmunología , Recurrencia Local de Neoplasia/patología , Adulto , Anciano , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patología , Inyecciones Espinales , Dosis Máxima Tolerada
3.
Nat Cancer ; 5(3): 517-531, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38216766

RESUMEN

We previously showed that chimeric antigen receptor (CAR) T-cell therapy targeting epidermal growth factor receptor variant III (EGFRvIII) produces upregulation of programmed death-ligand 1 (PD-L1) in the tumor microenvironment (TME). Here we conducted a phase 1 trial (NCT03726515) of CAR T-EGFRvIII cells administered concomitantly with the anti-PD1 (aPD1) monoclonal antibody pembrolizumab in patients with newly diagnosed, EGFRvIII+ glioblastoma (GBM) (n = 7). The primary outcome was safety, and no dose-limiting toxicity was observed. Secondary outcomes included median progression-free survival (5.2 months; 90% confidence interval (CI), 2.9-6.0 months) and median overall survival (11.8 months; 90% CI, 9.2-14.2 months). In exploratory analyses, comparison of the TME in tumors harvested before versus after CAR + aPD1 administration demonstrated substantial evolution of the infiltrating myeloid and T cells, with more exhausted, regulatory, and interferon (IFN)-stimulated T cells at relapse. Our study suggests that the combination of CAR T cells and PD-1 inhibition in GBM is safe and biologically active but, given the lack of efficacy, also indicates a need to consider alternative strategies.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Glioblastoma , Humanos , Glioblastoma/terapia , Receptores ErbB , Recurrencia Local de Neoplasia/metabolismo , Linfocitos T , Microambiente Tumoral
4.
J Neurooncol ; 165(1): 101-112, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37864646

RESUMEN

INTRODUCTION: Hypoxia inducible factor 2-alpha (HIF2α) mediates cellular responses to hypoxia and is over-expressed in glioblastoma (GBM). PT2385 is an oral HIF2α inhibitor with in vivo activity against GBM. METHODS: A two-stage single-arm open-label phase II study of adults with GBM at first recurrence following chemoradiation with measurable disease was conducted through the Adult Brain Tumor Consortium. PT2385 was administered at the phase II dose (800 mg b.i.d.). The primary outcome was objective radiographic response (ORR = complete response + partial response, CR + PR); secondary outcomes were safety, overall survival (OS), and progression free survival (PFS). Exploratory objectives included pharmacokinetics (day 15 Cmin), pharmacodynamics (erythropoietin, vascular endothelial growth factor), and pH-weighted amine- chemical exchange saturation transfer (CEST) MRI to quantify tumor acidity at baseline and explore associations with drug response. Stage 1 enrolled 24 patients with early stoppage for ≤ 1 ORR. RESULTS: Of the 24 enrolled patients, median age was 62.1 (38.7-76.7) years, median KPS 80, MGMT promoter was methylated in 46% of tumors. PT2385 was well tolerated. Grade ≥ 3 drug-related adverse events were hypoxia (n = 2), hyponatremia (2), lymphopenia (1), anemia (1), and hyperglycemia (1). No objective radiographic responses were observed; median PFS was 1.8 months (95% CI 1.6-2.5) and OS was 7.7 months (95% CI 4.9-12.6). Drug exposure varied widely and did not differ by corticosteroid use (p = 0.12), antiepileptics (p = 0.09), or sex (p = 0.37). Patients with high systemic exposure had significantly longer PFS (6.7 vs 1.8 months, p = 0.009). Baseline acidity by pH-weighted CEST MRI correlated significantly with treatment duration (R2 = 0.49, p = 0.017). Non-enhancing infiltrative disease with high acidity gave rise to recurrence. CONCLUSIONS: PT2385 monotherapy had limited activity in first recurrent GBM. Drug exposure was variable. Signals of activity were observed in GBM patients with high systemic exposure and acidic lesions on CEST imaging. A second-generation HIF2α inhibitor is being studied.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Adulto , Humanos , Persona de Mediana Edad , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/tratamiento farmacológico , Glioblastoma/diagnóstico por imagen , Glioblastoma/tratamiento farmacológico , Hipoxia , Recurrencia Local de Neoplasia/diagnóstico por imagen , Recurrencia Local de Neoplasia/tratamiento farmacológico , Factor A de Crecimiento Endotelial Vascular , Anciano
5.
Cancers (Basel) ; 15(18)2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37760422

RESUMEN

PURPOSE: The isocitrate dehydrogenase (IDH) mutation has become one of the most important prognostic biomarkers in glioma management, indicating better treatment response and prognosis. IDH mutations confer neomorphic activity leading to the conversion of alpha-ketoglutarate (α-KG) to 2-hydroxyglutarate (2HG). The purpose of this study was to investigate the clinical potential of proton MR spectroscopy (1H-MRS) in identifying IDH-mutant gliomas by detecting characteristic resonances of 2HG and its complex interplay with other clinically relevant metabolites. MATERIALS AND METHODS: Thirty-two patients with suspected infiltrative glioma underwent a single-voxel (SVS, n = 17) and/or single-slice-multivoxel (1H-MRSI, n = 15) proton MR spectroscopy (1H-MRS) sequence with an optimized echo-time (97 ms) on 3T-MRI. Spectroscopy data were analyzed using the linear combination (LC) model. Cramér-Rao lower bound (CRLB) values of <40% were considered acceptable for detecting 2HG and <20% for other metabolites. Immunohistochemical analyses for determining IDH mutational status were subsequently performed from resected tumor specimens and findings were compared with the results from spectral data. Mann-Whitney and chi-squared tests were performed to ascertain differences in metabolite levels between IDH-mutant and IDH-wild-type gliomas. Receiver operating characteristic (ROC) curve analyses were also performed. RESULTS: Data from eight cases were excluded due to poor spectral quality or non-tumor-related etiology, and final data analyses were performed from 24 cases. Of these cases, 9/12 (75%) were correctly identified as IDH-mutant or IDH-wildtype gliomas through SVS and 10/12 (83%) through 1H-MRSI with an overall concordance rate of 79% (19/24). The sensitivity, specificity, positive predictive value, and negative predictive value were 80%, 77%, 86%, and 70%, respectively. The metabolite 2HG was found to be significant in predicting IDH-mutant gliomas through the chi-squared test (p < 0.01). The IDH-mutant gliomas also had a significantly higher NAA/Cr ratio (1.20 ± 0.09 vs. 0.75 ± 0.12 p = 0.016) and lower Glx/Cr ratio (0.86 ± 0.078 vs. 1.88 ± 0.66; p = 0.029) than those with IDH wild-type gliomas. The areas under the ROC curves for NAA/Cr and Glx/Cr were 0.808 and 0.786, respectively. CONCLUSIONS: Noninvasive optimized 1H-MRS may be useful in predicting IDH mutational status and 2HG may serve as a valuable diagnostic and prognostic biomarker in patients with gliomas.

6.
Neurooncol Pract ; 10(4): 370-380, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37457221

RESUMEN

Background: Recurrent gliomas are therapeutically challenging diseases with few treatment options available. One area of potential therapeutic vulnerability is the presence of targetable oncogenic fusion proteins. Methods: To better understand the clinical benefit of routinely testing for fusion proteins in adult glioma patients, we performed a retrospective review of 647 adult patients with glioma who underwent surgical resection at our center between August 2017 and May 2021 and whose tumors were analyzed with an in-house fusion transcript panel. Results: Fifty-two patients (8%) were found to harbor a potentially targetable fusion with 11 (21%) of these patients receiving treatment with a fusion-targeted inhibitor. The targetable genes found to be involved in a fusion included FGFR3, MET, EGFR, NTRK1, NTRK2, BRAF, ROS1, and PIK3CA. Conclusions: This analysis demonstrates that routine clinical testing for gene fusions identifies a diverse repertoire of potential therapeutic targets in adult patients with glioma and can offer rational therapeutic options for patients with recurrent disease.

7.
J Neurooncol ; 163(1): 173-183, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37129737

RESUMEN

PURPOSE: Autologous tumor lysate-loaded dendritic cell vaccine (DCVax-L) is a promising treatment modality for glioblastomas. The purpose of this study was to investigate the potential utility of multiparametric MRI-based prediction model in evaluating treatment response in glioblastoma patients treated with DCVax-L. METHODS: Seventeen glioblastoma patients treated with standard-of-care therapy + DCVax-L were included. When tumor progression (TP) was suspected and repeat surgery was being contemplated, we sought to ascertain the number of cases correctly classified as TP + mixed response or pseudoprogression (PsP) from multiparametric MRI-based prediction model using histopathology/mRANO criteria as ground truth. Multiparametric MRI model consisted of predictive probabilities (PP) of tumor progression computed from diffusion and perfusion MRI-derived parameters. A comparison of overall survival (OS) was performed between patients treated with standard-of-care therapy + DCVax-L and standard-of-care therapy alone (external controls). Additionally, Kaplan-Meier analyses were performed to compare OS between two groups of patients using PsP, Ki-67, and MGMT promoter methylation status as stratification variables. RESULTS: Multiparametric MRI model correctly predicted TP + mixed response in 72.7% of cases (8/11) and PsP in 83.3% (5/6) with an overall concordance rate of 76.5% with final diagnosis as determined by histopathology/mRANO criteria. There was a significant concordant correlation coefficient between PP values and histopathology/mRANO criteria (r = 0.54; p = 0.026). DCVax-L-treated patients had significantly prolonged OS than those treated with standard-of-care therapy (22.38 ± 12.8 vs. 13.8 ± 9.5 months, p = 0.040). Additionally, glioblastomas with PsP, MGMT promoter methylation status, and Ki-67 values below median had longer OS than their counterparts. CONCLUSION: Multiparametric MRI-based prediction model can assess treatment response to DCVax-L in patients with glioblastoma.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Imágenes de Resonancia Magnética Multiparamétrica , Vacunas , Humanos , Glioblastoma/diagnóstico por imagen , Glioblastoma/terapia , Antígeno Ki-67 , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/terapia , Células Dendríticas
8.
J Transl Med ; 21(1): 287, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37118754

RESUMEN

BACKGROUND: Accurate differentiation of pseudoprogression (PsP) from tumor progression (TP) in glioblastomas (GBMs) is essential for appropriate clinical management and prognostication of these patients. In the present study, we sought to validate the findings of our previously developed multiparametric MRI model in a new cohort of GBM patients treated with standard therapy in identifying PsP cases. METHODS: Fifty-six GBM patients demonstrating enhancing lesions within 6 months after completion of concurrent chemo-radiotherapy (CCRT) underwent anatomical imaging, diffusion and perfusion MRI on a 3 T magnet. Subsequently, patients were classified as TP + mixed tumor (n = 37) and PsP (n = 19). When tumor specimens were available from repeat surgery, histopathologic findings were used to identify TP + mixed tumor (> 25% malignant features; n = 34) or PsP (< 25% malignant features; n = 16). In case of non-availability of tumor specimens, ≥ 2 consecutive conventional MRIs using mRANO criteria were used to determine TP + mixed tumor (n = 3) or PsP (n = 3). The multiparametric MRI-based prediction model consisted of predictive probabilities (PP) of tumor progression computed from diffusion and perfusion MRI derived parameters from contrast enhancing regions. In the next step, PP values were used to characterize each lesion as PsP or TP+ mixed tumor. The lesions were considered as PsP if the PP value was < 50% and TP+ mixed tumor if the PP value was ≥ 50%. Pearson test was used to determine the concordance correlation coefficient between PP values and histopathology/mRANO criteria. The area under ROC curve (AUC) was used as a quantitative measure for assessing the discriminatory accuracy of the prediction model in identifying PsP and TP+ mixed tumor. RESULTS: Multiparametric MRI model correctly predicted PsP in 95% (18/19) and TP+ mixed tumor in 57% of cases (21/37) with an overall concordance rate of 70% (39/56) with final diagnosis as determined by histopathology/mRANO criteria. There was a significant concordant correlation coefficient between PP values and histopathology/mRANO criteria (r = 0.56; p < 0.001). The ROC analyses revealed an accuracy of 75.7% in distinguishing PsP from TP+ mixed tumor. Leave-one-out cross-validation test revealed that 73.2% of cases were correctly classified as PsP and TP + mixed tumor. CONCLUSIONS: Our multiparametric MRI based prediction model may be helpful in identifying PsP in GBM patients.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Imágenes de Resonancia Magnética Multiparamétrica , Humanos , Glioblastoma/patología , Neoplasias Encefálicas/patología , Progresión de la Enfermedad , Imagen por Resonancia Magnética , Estudios Retrospectivos
11.
J Nucl Med ; 64(6): 852-858, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36549916

RESUMEN

Accurate differentiation between tumor progression (TP) and pseudoprogression remains a critical unmet need in neurooncology. 18F-fluciclovine is a widely available synthetic amino acid PET radiotracer. In this study, we aimed to assess the value of 18F-fluciclovine PET for differentiating pseudoprogression from TP in a prospective cohort of patients with suspected radiographic recurrence of glioblastoma. Methods: We enrolled 30 glioblastoma patients with radiographic progression after first-line chemoradiotherapy for whom surgical resection was planned. The patients underwent preoperative 18F-fluciclovine PET and MRI. The relative percentages of viable tumor and therapy-related changes observed in histopathology were quantified and categorized as TP (≥50% viable tumor), mixed TP (<50% and >10% viable tumor), or pseudoprogression (≤10% viable tumor). Results: Eighteen patients had TP, 4 had mixed TP, and 8 had pseudoprogression. Patients with TP/mixed TP had a significantly higher 40- to 50-min SUVmax (6.64 + 1.88 vs. 4.11 ± 1.52, P = 0.009) than patients with pseudoprogression. A 40- to 50-min SUVmax cutoff of 4.66 provided 90% sensitivity and 83% specificity for differentiation of TP/mixed TP from pseudoprogression (area under the curve [AUC], 0.86). A maximum relative cerebral blood volume cutoff of 3.672 provided 90% sensitivity and 71% specificity for differentiation of TP/mixed TP from pseudoprogression (AUC, 0.779). Combining a 40- to 50-min SUVmax cutoff of 4.66 and a maximum relative cerebral blood volume of 3.67 on MRI provided 100% sensitivity and 80% specificity for differentiating TP/mixed TP from pseudoprogression (AUC, 0.95). Conclusion: 18F-fluciclovine PET uptake can accurately differentiate pseudoprogression from TP in glioblastoma, with even greater accuracy when combined with multiparametric MRI. Given the wide availability of 18F-fluciclovine, larger, multicenter studies are warranted to determine whether amino acid PET with 18F-fluciclovine should be used in the routine posttreatment assessment of glioblastoma.


Asunto(s)
Glioblastoma , Humanos , Glioblastoma/diagnóstico por imagen , Glioblastoma/terapia , Glioblastoma/patología , Estudios Prospectivos , Imagen por Resonancia Magnética , Ácidos Carboxílicos , Tomografía de Emisión de Positrones , Aminoácidos
12.
Sci Data ; 9(1): 453, 2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35906241

RESUMEN

Glioblastoma is the most common aggressive adult brain tumor. Numerous studies have reported results from either private institutional data or publicly available datasets. However, current public datasets are limited in terms of: a) number of subjects, b) lack of consistent acquisition protocol, c) data quality, or d) accompanying clinical, demographic, and molecular information. Toward alleviating these limitations, we contribute the "University of Pennsylvania Glioblastoma Imaging, Genomics, and Radiomics" (UPenn-GBM) dataset, which describes the currently largest publicly available comprehensive collection of 630 patients diagnosed with de novo glioblastoma. The UPenn-GBM dataset includes (a) advanced multi-parametric magnetic resonance imaging scans acquired during routine clinical practice, at the University of Pennsylvania Health System, (b) accompanying clinical, demographic, and molecular information, (d) perfusion and diffusion derivative volumes, (e) computationally-derived and manually-revised expert annotations of tumor sub-regions, as well as (f) quantitative imaging (also known as radiomic) features corresponding to each of these regions. This collection describes our contribution towards repeatable, reproducible, and comparative quantitative studies leading to new predictive, prognostic, and diagnostic assessments.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Adulto , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/fisiopatología , Genómica , Glioblastoma/diagnóstico por imagen , Glioblastoma/genética , Glioblastoma/fisiopatología , Humanos , Imagen por Resonancia Magnética , Pronóstico
13.
Neuro Oncol ; 24(12): 2172-2179, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-35551405

RESUMEN

BACKGROUND: Glioblastoma (GBM) is associated with a high incidence of venous thromboembolism (VTE), but there are little data to guide anticoagulation in patients with GBM, in whom the risks of VTE must be balanced against the risk of intracranial hemorrhage (ICH). METHODS: We performed a single-institution retrospective cohort study of patients with GBM diagnosed with VTE from 2014 to 2021 who were treated with low molecular weight heparin (LMWH) or a direct oral anticoagulant (DOAC). The incidence of ICH was compared between the LMWH and DOAC groups. The primary outcome was clinically relevant ICH within the first 30 days of anticoagulation, defined as any ICH that was fatal, symptomatic, required surgical intervention, and/or led to cessation of anticoagulation. Secondary outcomes included clinically relevant ICH within 6 months, fatal ICH within 30 days and 6 months, and any bleeding within 30 days and 6 months. RESULTS: One hundred twenty-one patients were identified in the cohort for 30-day outcome analyses (DOAC, n = 33; LMWH, n = 88). For 6-month outcome analyses, the cohort included only patients who were maintained on their initial anticoagulant (DOAC, n = 32; LMWH, n = 75). The incidence of clinically relevant ICH at 30 days was 0% in the DOAC group and 9% in the LMWH group (P = .11). The cumulative incidence of clinically relevant ICH at 6 months was 0% in the DOAC group and 24% in the LMWH group (P = .001), with 4 fatal ICHs in the LMWH group. CONCLUSIONS: DOACs are associated with a lower incidence of clinically relevant ICH in patients with GBM-associated VTE compared to LMWH.


Asunto(s)
Glioblastoma , Tromboembolia Venosa , Humanos , Heparina de Bajo-Peso-Molecular/efectos adversos , Tromboembolia Venosa/tratamiento farmacológico , Tromboembolia Venosa/epidemiología , Tromboembolia Venosa/etiología , Glioblastoma/complicaciones , Glioblastoma/tratamiento farmacológico , Glioblastoma/inducido químicamente , Estudios Retrospectivos , Anticoagulantes/efectos adversos , Hemorragias Intracraneales/inducido químicamente , Hemorragias Intracraneales/epidemiología , Hemorragias Intracraneales/complicaciones , Estudios de Cohortes
14.
Sci Rep ; 12(1): 8784, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35610333

RESUMEN

Multi-omic data, i.e., clinical measures, radiomic, and genetic data, capture multi-faceted tumor characteristics, contributing to a comprehensive patient risk assessment. Here, we investigate the additive value and independent reproducibility of integrated diagnostics in prediction of overall survival (OS) in isocitrate dehydrogenase (IDH)-wildtype GBM patients, by combining conventional and deep learning methods. Conventional radiomics and deep learning features were extracted from pre-operative multi-parametric MRI of 516 GBM patients. Support vector machine (SVM) classifiers were trained on the radiomic features in the discovery cohort (n = 404) to categorize patient groups of high-risk (OS < 6 months) vs all, and low-risk (OS ≥ 18 months) vs all. The trained radiomic model was independently tested in the replication cohort (n = 112) and a patient-wise survival prediction index was produced. Multivariate Cox-PH models were generated for the replication cohort, first based on clinical measures solely, and then by layering on radiomics and molecular information. Evaluation of the high-risk and low-risk classifiers in the discovery/replication cohorts revealed area under the ROC curves (AUCs) of 0.78 (95% CI 0.70-0.85)/0.75 (95% CI 0.64-0.79) and 0.75 (95% CI 0.65-0.84)/0.63 (95% CI 0.52-0.71), respectively. Cox-PH modeling showed a concordance index of 0.65 (95% CI 0.6-0.7) for clinical data improving to 0.75 (95% CI 0.72-0.79) for the combination of all omics. This study signifies the value of integrated diagnostics for improved prediction of OS in GBM.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Inteligencia Artificial , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Genómica , Glioblastoma/diagnóstico por imagen , Glioblastoma/genética , Glioblastoma/patología , Humanos , Imagen por Resonancia Magnética/métodos , Reproducibilidad de los Resultados , Estudios Retrospectivos
15.
J Neurooncol ; 156(3): 645-653, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35043276

RESUMEN

PURPOSE: Tumor-associated macrophages (TAMs) are a key component of glioblastoma (GBM) microenvironment. Considering the differential role of different TAM phenotypes in iron metabolism with the M1 phenotype storing intracellular iron, and M2 phenotype releasing iron in the tumor microenvironment, we investigated MRI to quantify iron as an imaging biomarker for TAMs in GBM patients. METHODS: 21 adult patients with GBM underwent a 3D single echo gradient echo MRI sequence and quantitative susceptibility maps were generated. In 3 subjects, ex vivo imaging of surgical specimens was performed on a 9.4 Tesla MRI using 3D multi-echo GRE scans, and R2* (1/T2*) maps were generated. Each specimen was stained with hematoxylin and eosin, as well as CD68, CD86, CD206, and L-Ferritin. RESULTS: Significant positive correlation was observed between mean susceptibility for the tumor enhancing zone and the L-ferritin positivity percent (r = 0.56, p = 0.018) and the combination of tumor's enhancing zone and necrotic core and the L-Ferritin positivity percent (r = 0.72; p = 0.001). The mean susceptibility significantly correlated with positivity percent for CD68 (ρ = 0.52, p = 0.034) and CD86 (r = 0.7 p = 0.001), but not for CD206 (ρ = 0.09; p = 0.7). There was a positive correlation between mean R2* values and CD68 positive cell counts (r = 0.6, p = 0.016). Similarly, mean R2* values significantly correlated with CD86 (r = 0.54, p = 0.03) but not with CD206 (r = 0.15, p = 0.5). CONCLUSIONS: This study demonstrated the potential of MR quantitative susceptibility mapping as a non-invasive method for in vivo TAM quantification and phenotyping. Validation of these findings with large multicenter studies is needed.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Imagen por Resonancia Magnética , Macrófagos Asociados a Tumores , Adulto , Apoferritinas/metabolismo , Biomarcadores/metabolismo , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Glioblastoma/diagnóstico por imagen , Glioblastoma/patología , Humanos , Hierro/metabolismo , Imagen por Resonancia Magnética/métodos , Reproducibilidad de los Resultados
16.
Surg Neurol Int ; 12: 337, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34345478

RESUMEN

BACKGROUND: Glioblastoma (GBM) is the most common malignant brain tumor and carries a dismal prognosis. Attempts to develop biologically targeted therapies are challenging as the blood-brain barrier can limit drugs from reaching their target when administered through conventional (intravenous or oral) routes. Furthermore, systemic toxicity of drugs often limits their therapeutic potential. To circumvent these problems, convection-enhanced delivery (CED) provides direct, targeted, intralesional therapy with a secondary objective to alter the tumor microenvironment from an immunologically "cold" (nonresponsive) to an "inflamed" (immunoresponsive) tumor. CASE DESCRIPTION: We report a patient with right occipital recurrent GBM harboring poor prognostic genotypes who was treated with MRI-guided CED of a fusion protein MDNA55 (a targeted toxin directed toward the interleukin-4 receptor). The patient underwent serial anatomical, diffusion, and perfusion MRI scans before initiation of targeted therapy and at 1, 3-month posttherapy. Increased mean diffusivity along with decreased fractional anisotropy and maximum relative cerebral blood volume was noted at follow-up periods relative to baseline. CONCLUSION: Our findings suggest that diffusion and perfusion MRI techniques may be useful in evaluating early response to CED of MDNA55 in recurrent GBM patients.

17.
Sci Rep ; 11(1): 15011, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34294864

RESUMEN

Glioblastoma (GBM) has high metabolic demands, which can lead to acidification of the tumor microenvironment. We hypothesize that a machine learning model built on temporal principal component analysis (PCA) of dynamic susceptibility contrast-enhanced (DSC) perfusion MRI can be used to estimate tumor acidity in GBM, as estimated by pH-sensitive amine chemical exchange saturation transfer echo-planar imaging (CEST-EPI). We analyzed 78 MRI scans in 32 treatment naïve and post-treatment GBM patients. All patients were imaged with DSC-MRI, and pH-weighting that was quantified from CEST-EPI estimation of the magnetization transfer ratio asymmetry (MTRasym) at 3 ppm. Enhancing tumor (ET), non-enhancing core (NC), and peritumoral T2 hyperintensity (namely, edema, ED) were used to extract principal components (PCs) and to build support vector machines regression (SVR) models to predict MTRasym values using PCs. Our predicted map correlated with MTRasym values with Spearman's r equal to 0.66, 0.47, 0.67, 0.71, in NC, ET, ED, and overall, respectively (p < 0.006). The results of this study demonstrates that PCA analysis of DSC imaging data can provide information about tumor pH in GBM patients, with the strongest association within the peritumoral regions.


Asunto(s)
Glioblastoma/diagnóstico por imagen , Glioblastoma/patología , Concentración de Iones de Hidrógeno , Imagen por Resonancia Magnética/métodos , Microambiente Tumoral , Anciano , Animales , Interpretación Estadística de Datos , Modelos Animales de Enfermedad , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética/normas , Masculino , Ratones , Persona de Mediana Edad , Clasificación del Tumor , Estadificación de Neoplasias , Análisis de Componente Principal
18.
Front Oncol ; 11: 669071, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34026647

RESUMEN

Autologous chimeric antigen receptor (CAR) T cells targeted to epidermal growth factor receptor variant III (CAR T-EGFRvIII) have been developed and administered experimentally to treat patients with IDH1 wildtype recurrent glioblastoma (rGBM) (NCT02209376). We report the case of a 59-year-old patient who received a single peripheral infusion of CAR T-EGFRvIII cells and survived 36 months after disease recurrence, exceeding expected survival for recurrent glioblastoma. Post-infusion histopathologic analysis of tissue obtained during a second stage surgical resection revealed immunosuppressive adaptive changes in the tumor tissue as well as reduced EGFRvIII expression. Serial brain imaging demonstrated a significant reduction in relative cerebral blood volume (rCBV), a measure strongly associated with tumor proliferative activity, at early time points following CAR T treatment. Notably, CAR T-EGFRvIII cells persisted in her peripheral circulation during 29 months of follow-up, the longest period of CAR T persistence reported in GBM trials to date. These findings in a long-term survivor show that peripherally administered CAR T-EGFRvIII cells can persist for years in the circulation and suggest that this cell therapy approach could be optimized to achieve broader efficacy in recurrent GBM patients.

19.
Neurooncol Adv ; 3(1): vdab011, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33615225

RESUMEN

BACKGROUND: We aimed to determine whether plasma cell-free DNA (cfDNA) concentration is associated with survival in patients with isocitrate dehydrogenase (IDH) wild-type glioblastoma (GBM). METHODS: Pre-operative and post-chemoradiotherapy blood samples were prospectively collected from patients with newly diagnosed IDH wild-type GBM. Patients underwent surgical resection or biopsy and received adjuvant radiotherapy with concomitant temozolomide. Cell-free DNA (cfDNA) was isolated from plasma and quantified using SYBR Green-based q polymerase chain reaction (qPCR). RESULTS: Sixty-two patients were enrolled and categorized into high vs. low cfDNA groups relative to the pre-operative median value (25.2 ng/mL, range 5.7-153.0 ng/mL). High pre-operative cfDNA concentration was associated with inferior PFS (median progression-free survival (PFS), 3.4 vs. 7.7 months; log-rank P = .004; hazard ratio [HR], 2.19; 95% CI, 1.26-3.81) and overall survival (OS) (median OS, 8.0 vs. 13.9 months; log-rank P = .01; HR, 2.43; 95% CI, 1.19-4.95). After adjusting for risk factors, including O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation status, pre-operative cfDNA remained independently associated with PFS (HR, 2.70; 95% CI, 1.50-4.83; P = .001) and OS (HR, 2.65; 95% CI, 1.25-5.59; P = .01). Post-hoc analysis of change in cfDNA post-chemoradiotherapy compared to pre-surgery (n = 24) showed increasing cfDNA concentration was associated with worse PFS (median, 2.7 vs. 6.0 months; log-rank P = .003; HR, 4.92; 95% CI, 1.53-15.84) and OS (median, 3.9 vs. 19.4 months; log-rank P < .001; HR, 7.77; 95% CI, 2.17-27.76). CONCLUSIONS: cfDNA concentration is a promising prognostic biomarker for patients with IDH wild-type GBM. Plasma cfDNA can be obtained noninvasively and may enable more accurate estimates of survival and effective clinical trial stratification.

20.
Acta Neuropathol Commun ; 8(1): 115, 2020 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-32690110

RESUMEN

A case of a true dual-genotype IDH-mutant oligoastrocytoma with two different cell types within a single mass in a young woman is presented. Imaging findings of the left frontal infiltrating glioma predicted the two neoplastic components that were identified upon resection. Tissue examination demonstrated areas of tumor with contrasting histologic and molecular features, including specific IDH1, ATRX, TP53, TERT and CIC mutational profiles, consistent with oligodendroglioma and astrocytoma, respectively. The clinical and radiological course over 17 months from first diagnosis included three surgical resections with slow progression of the astrocytic component, and ultimately chemotherapy and radiation treatments were commenced. Reports of the clinical courses for these rare cases of dual-genotype oligoastrocytomas will inform therapy choices, to optimize benefit while minimizing side effects. The steadily increasing number of cases suggests that the neoplasm might be reconsidered as an official entity by the WHO.


Asunto(s)
Astrocitoma/genética , Astrocitoma/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Oligodendroglioma/patología , Adulto , Biomarcadores de Tumor/análisis , Femenino , Genotipo , Humanos , Isocitrato Deshidrogenasa/genética , Mutación , Proteínas Represoras/genética , Telomerasa/genética , Proteína p53 Supresora de Tumor/genética , Proteína Nuclear Ligada al Cromosoma X/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...