Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Magn Reson Imaging ; 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38703134

RESUMEN

BACKGROUND: Cartilage T2 can detect joints at risk of developing osteoarthritis. The quantitative double-echo steady state (qDESS) sequence is attractive for knee cartilage T2 mapping because of its acquisition time of under 5 minutes. Understanding the reproducibility errors associated with qDESS T2 is essential to profiling the technical performance of this biomarker. PURPOSE: To examine the combined acquisition and segmentation reproducibility of knee cartilage qDESS T2 using two different regional analysis schemes: 1) manual segmentation of subregions loaded during common activities and 2) automatic subregional segmentation. STUDY TYPE: Prospective. SUBJECTS: 11 uninjured participants (age: 28 ± 3 years; 8 (73%) female). FIELD STRENGTH/SEQUENCE: 3-T, qDESS. ASSESSMENT: Test-retest T2 maps were acquired twice on the same day and with a 1-week interval between scans. For each acquisition, average cartilage T2 was calculated in four manually segmented regions encompassing tibiofemoral contact areas during common activities and 12 automatically segmented regions from the deep-learning open-source framework for musculoskeletal MRI analysis (DOSMA) encompassing medial and lateral anterior, central, and posterior tibiofemoral regions. Test-retest T2 values from matching regions were used to evaluate reproducibility. STATISTICAL TESTS: Coefficients of variation (%CV), root-mean-square-average-CV (%RMSA-CV), and intraclass correlation coefficients (ICCs) assessed test-retest T2 reproducibility. The median of test-retest standard deviations was used for T2 precision. Bland-Altman (BA) analyses examined test-retest biases. The smallest detectable difference (SDD) was defined as the BA limit of agreement of largest magnitude. Significance was accepted for P < 0.05. RESULTS: All cartilage regions across both segmentation schemes demonstrated intraday and interday qDESS T2 CVs and RMSA-CVs of ≤5%. T2 ICC values >0.75 were observed in the majority of regions but were more variable in interday tibial comparisons. Test-retest T2 precision was <1.3 msec. The T2 SDD was 3.8 msec. DATA CONCLUSION: Excellent CV and RMSA-CV reproducibility may suggest that qDESS T2 increases or decreases >5% (3.8 msec) could represent changes to cartilage composition. TECHNICAL EFFICACY: Stage 2.

2.
Sci Rep ; 13(1): 21034, 2023 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-38030716

RESUMEN

Current risk scores using clinical risk factors for predicting ischemic heart disease (IHD) events-the leading cause of global mortality-have known limitations and may be improved by imaging biomarkers. While body composition (BC) imaging biomarkers derived from abdominopelvic computed tomography (CT) correlate with IHD risk, they are impractical to measure manually. Here, in a retrospective cohort of 8139 contrast-enhanced abdominopelvic CT examinations undergoing up to 5 years of follow-up, we developed multimodal opportunistic risk assessment models for IHD by automatically extracting BC features from abdominal CT images and integrating these with features from each patient's electronic medical record (EMR). Our predictive methods match and, in some cases, outperform clinical risk scores currently used in IHD risk assessment. We provide clinical interpretability of our model using a new method of determining tissue-level contributions from CT along with weightings of EMR features contributing to IHD risk. We conclude that such a multimodal approach, which automatically integrates BC biomarkers and EMR data, can enhance IHD risk assessment and aid primary prevention efforts for IHD. To further promote research, we release the Opportunistic L3 Ischemic heart disease (OL3I) dataset, the first public multimodal dataset for opportunistic CT prediction of IHD.


Asunto(s)
Inteligencia Artificial , Isquemia Miocárdica , Humanos , Estudios Retrospectivos , Isquemia Miocárdica/diagnóstico por imagen , Isquemia Miocárdica/etiología , Tomografía Computarizada por Rayos X/efectos adversos , Factores de Riesgo , Medición de Riesgo , Biomarcadores , Registros Médicos
3.
Magn Reson Med ; 90(5): 2052-2070, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37427449

RESUMEN

PURPOSE: To develop a method for building MRI reconstruction neural networks robust to changes in signal-to-noise ratio (SNR) and trainable with a limited number of fully sampled scans. METHODS: We propose Noise2Recon, a consistency training method for SNR-robust accelerated MRI reconstruction that can use both fully sampled (labeled) and undersampled (unlabeled) scans. Noise2Recon uses unlabeled data by enforcing consistency between model reconstructions of undersampled scans and their noise-augmented counterparts. Noise2Recon was compared to compressed sensing and both supervised and self-supervised deep learning baselines. Experiments were conducted using retrospectively accelerated data from the mridata three-dimensional fast-spin-echo knee and two-dimensional fastMRI brain datasets. All methods were evaluated in label-limited settings and among out-of-distribution (OOD) shifts, including changes in SNR, acceleration factors, and datasets. An extensive ablation study was conducted to characterize the sensitivity of Noise2Recon to hyperparameter choices. RESULTS: In label-limited settings, Noise2Recon achieved better structural similarity, peak signal-to-noise ratio, and normalized-RMS error than all baselines and matched performance of supervised models, which were trained with 14 × $$ 14\times $$ more fully sampled scans. Noise2Recon outperformed all baselines, including state-of-the-art fine-tuning and augmentation techniques, among low-SNR scans and when generalizing to OOD acceleration factors. Augmentation extent and loss weighting hyperparameters had negligible impact on Noise2Recon compared to supervised methods, which may indicate increased training stability. CONCLUSION: Noise2Recon is a label-efficient reconstruction method that is robust to distribution shifts, such as changes in SNR, acceleration factors, and others, with limited or no fully sampled training data.


Asunto(s)
Aprendizaje Profundo , Procesamiento de Imagen Asistido por Computador , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Relación Señal-Ruido , Estudios Retrospectivos , Imagen por Resonancia Magnética/métodos , Aprendizaje Automático Supervisado
4.
MAGMA ; 36(5): 711-724, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37142852

RESUMEN

PURPOSE: [Formula: see text] mapping is a powerful tool for studying osteoarthritis (OA) changes and bilateral imaging may be useful in investigating the role of between-knee asymmetry in OA onset and progression. The quantitative double-echo in steady-state (qDESS) can provide fast simultaneous bilateral knee [Formula: see text] and high-resolution morphometry for cartilage and meniscus. The qDESS uses an analytical signal model to compute [Formula: see text] relaxometry maps, which require knowledge of the flip angle (FA). In the presence of [Formula: see text] inhomogeneities, inconsistencies between the nominal and actual FA can affect the accuracy of [Formula: see text] measurements. We propose a pixel-wise [Formula: see text] correction method for qDESS [Formula: see text] mapping exploiting an auxiliary [Formula: see text] map to compute the actual FA used in the model. METHODS: The technique was validated in a phantom and in vivo with simultaneous bilateral knee imaging. [Formula: see text] measurements of femoral cartilage (FC) of both knees of six healthy participants were repeated longitudinally to investigate the association between [Formula: see text] variation and [Formula: see text]. RESULTS: The results showed that applying the [Formula: see text] correction mitigated [Formula: see text] variations that were driven by [Formula: see text] inhomogeneities. Specifically, [Formula: see text] left-right symmetry increased following the [Formula: see text] correction ([Formula: see text] = 0.74 > [Formula: see text] = 0.69). Without the [Formula: see text] correction, [Formula: see text] values showed a linear dependence with [Formula: see text]. The linear coefficient decreased using the [Formula: see text] correction (from 24.3 ± 1.6 ms to 4.1 ± 1.8) and the correlation was not statistically significant after the application of the Bonferroni correction (p value > 0.01). CONCLUSION: The study showed that [Formula: see text] correction could mitigate variations driven by the sensitivity of the qDESS [Formula: see text] mapping method to [Formula: see text], therefore, increasing the sensitivity to detect real biological changes. The proposed method may improve the robustness of bilateral qDESS [Formula: see text] mapping, allowing for an accurate and more efficient evaluation of OA pathways and pathophysiology through longitudinal and cross-sectional studies.


Asunto(s)
Articulación de la Rodilla , Imagen por Resonancia Magnética , Humanos , Estudios Transversales , Imagen por Resonancia Magnética/métodos , Articulación de la Rodilla/diagnóstico por imagen , Imagenología Tridimensional , Fantasmas de Imagen
5.
Bioengineering (Basel) ; 10(2)2023 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-36829701

RESUMEN

We systematically evaluate the training methodology and efficacy of two inpainting-based pretext tasks of context prediction and context restoration for medical image segmentation using self-supervised learning (SSL). Multiple versions of self-supervised U-Net models were trained to segment MRI and CT datasets, each using a different combination of design choices and pretext tasks to determine the effect of these design choices on segmentation performance. The optimal design choices were used to train SSL models that were then compared with baseline supervised models for computing clinically-relevant metrics in label-limited scenarios. We observed that SSL pretraining with context restoration using 32 × 32 patches and Poission-disc sampling, transferring only the pretrained encoder weights, and fine-tuning immediately with an initial learning rate of 1 × 10-3 provided the most benefit over supervised learning for MRI and CT tissue segmentation accuracy (p < 0.001). For both datasets and most label-limited scenarios, scaling the size of unlabeled pretraining data resulted in improved segmentation performance. SSL models pretrained with this amount of data outperformed baseline supervised models in the computation of clinically-relevant metrics, especially when the performance of supervised learning was low. Our results demonstrate that SSL pretraining using inpainting-based pretext tasks can help increase the robustness of models in label-limited scenarios and reduce worst-case errors that occur with supervised learning.

6.
J Magn Reson Imaging ; 57(4): 1029-1039, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35852498

RESUMEN

BACKGROUND: Deep learning (DL)-based automatic segmentation models can expedite manual segmentation yet require resource-intensive fine-tuning before deployment on new datasets. The generalizability of DL methods to new datasets without fine-tuning is not well characterized. PURPOSE: Evaluate the generalizability of DL-based models by deploying pretrained models on independent datasets varying by MR scanner, acquisition parameters, and subject population. STUDY TYPE: Retrospective based on prospectively acquired data. POPULATION: Overall test dataset: 59 subjects (26 females); Study 1: 5 healthy subjects (zero females), Study 2: 8 healthy subjects (eight females), Study 3: 10 subjects with osteoarthritis (eight females), Study 4: 36 subjects with various knee pathology (10 females). FIELD STRENGTH/SEQUENCE: A 3-T, quantitative double-echo steady state (qDESS). ASSESSMENT: Four annotators manually segmented knee cartilage. Each reader segmented one of four qDESS datasets in the test dataset. Two DL models, one trained on qDESS data and another on Osteoarthritis Initiative (OAI)-DESS data, were assessed. Manual and automatic segmentations were compared by quantifying variations in segmentation accuracy, volume, and T2 relaxation times for superficial and deep cartilage. STATISTICAL TESTS: Dice similarity coefficient (DSC) for segmentation accuracy. Lin's concordance correlation coefficient (CCC), Wilcoxon rank-sum tests, root-mean-squared error-coefficient-of-variation to quantify manual vs. automatic T2 and volume variations. Bland-Altman plots for manual vs. automatic T2 agreement. A P value < 0.05 was considered statistically significant. RESULTS: DSCs for the qDESS-trained model, 0.79-0.93, were higher than those for the OAI-DESS-trained model, 0.59-0.79. T2 and volume CCCs for the qDESS-trained model, 0.75-0.98 and 0.47-0.95, were higher than respective CCCs for the OAI-DESS-trained model, 0.35-0.90 and 0.13-0.84. Bland-Altman 95% limits of agreement for superficial and deep cartilage T2 were lower for the qDESS-trained model, ±2.4 msec and ±4.0 msec, than the OAI-DESS-trained model, ±4.4 msec and ±5.2 msec. DATA CONCLUSION: The qDESS-trained model may generalize well to independent qDESS datasets regardless of MR scanner, acquisition parameters, and subject population. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 1.


Asunto(s)
Cartílago Articular , Aprendizaje Profundo , Osteoartritis de la Rodilla , Femenino , Humanos , Estudios Retrospectivos , Cartílago Articular/patología , Imagen por Resonancia Magnética/métodos , Algoritmos , Osteoartritis de la Rodilla/patología
7.
Radiol Artif Intell ; 3(3): e200078, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34235438

RESUMEN

PURPOSE: To organize a multi-institute knee MRI segmentation challenge for characterizing the semantic and clinical efficacy of automatic segmentation methods relevant for monitoring osteoarthritis progression. MATERIALS AND METHODS: A dataset partition consisting of three-dimensional knee MRI from 88 retrospective patients at two time points (baseline and 1-year follow-up) with ground truth articular (femoral, tibial, and patellar) cartilage and meniscus segmentations was standardized. Challenge submissions and a majority-vote ensemble were evaluated against ground truth segmentations using Dice score, average symmetric surface distance, volumetric overlap error, and coefficient of variation on a holdout test set. Similarities in automated segmentations were measured using pairwise Dice coefficient correlations. Articular cartilage thickness was computed longitudinally and with scans. Correlation between thickness error and segmentation metrics was measured using the Pearson correlation coefficient. Two empirical upper bounds for ensemble performance were computed using combinations of model outputs that consolidated true positives and true negatives. RESULTS: Six teams (T 1-T 6) submitted entries for the challenge. No differences were observed across any segmentation metrics for any tissues (P = .99) among the four top-performing networks (T 2, T 3, T 4, T 6). Dice coefficient correlations between network pairs were high (> 0.85). Per-scan thickness errors were negligible among networks T 1-T 4 (P = .99), and longitudinal changes showed minimal bias (< 0.03 mm). Low correlations (ρ < 0.41) were observed between segmentation metrics and thickness error. The majority-vote ensemble was comparable to top-performing networks (P = .99). Empirical upper-bound performances were similar for both combinations (P = .99). CONCLUSION: Diverse networks learned to segment the knee similarly, where high segmentation accuracy did not correlate with cartilage thickness accuracy and voting ensembles did not exceed individual network performance.See also the commentary by Elhalawani and Mak in this issue.Keywords: Cartilage, Knee, MR-Imaging, Segmentation © RSNA, 2020Supplemental material is available for this article.

8.
J Magn Reson Imaging ; 54(3): 840-851, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33763929

RESUMEN

BACKGROUND: Injuries to the articular cartilage in the knee are common in jumping athletes, particularly high-level basketball players. Unfortunately, these are often diagnosed at a late stage of the disease process, after tissue loss has already occurred. PURPOSE/HYPOTHESIS: To evaluate longitudinal changes in knee articular cartilage and knee function in National Collegiate Athletic Association (NCAA) basketball players and their evolution over the competitive season and off-season. STUDY TYPE: Longitudinal, multisite cohort study. POPULATION: Thirty-two NCAA Division 1 athletes: 22 basketball players and 10 swimmers. FIELD STRENGTH/SEQUENCE: Bilateral magnetic resonance imaging (MRI) using a combined T1ρ and T2 magnetization-prepared angle-modulated portioned k-space spoiled gradient-echo snapshots (MAPSS) sequence at 3T. ASSESSMENT: We calculated T2 and T1ρ relaxation times to compare compositional cartilage changes between three timepoints: preseason 1, postseason 1, and preseason 2. Knee Osteoarthritis Outcome Scores (KOOS) were used to assess knee health. STATISTICAL TESTS: One-way variance model hypothesis test, general linear model, and chi-squared test. RESULTS: In the femoral articular cartilage of all athletes, we saw a global decrease in T2 and T1ρ relaxation times during the competitive season (all P < 0.05) and an increase in T2 and T1ρ relaxation times during the off-season (all P < 0.05). In the basketball players' femoral cartilage, the anterior and central compartments respectively had the highest T2 and T1ρ relaxation times following the competitive season and off-season. The basketball players had significantly lower KOOS measures in every domain compared with the swimmers: Pain (P < 0.05), Symptoms (P < 0.05), Function in Daily Living (P < 0.05), Function in Sport/Recreation (P < 0.05), and Quality of Life (P < 0.05). CONCLUSION: Our results indicate that T2 and T1ρ MRI can detect significant seasonal changes in the articular cartilage of basketball players and that there are regional differences in the articular cartilage that are indicative of basketball-specific stress on the femoral cartilage. This study demonstrates the potential of quantitative MRI to monitor global and regional cartilage health in athletes at risk of developing cartilage problems. LEVEL OF EVIDENCE: 2 Technical Efficacy Stage: 2.


Asunto(s)
Baloncesto , Cartílago Articular , Osteoartritis de la Rodilla , Cartílago Articular/diagnóstico por imagen , Estudios de Cohortes , Humanos , Articulación de la Rodilla/diagnóstico por imagen , Imagen por Resonancia Magnética , Calidad de Vida , Estaciones del Año
9.
NMR Biomed ; 33(8): e4310, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32445515

RESUMEN

Chemical exchange saturation transfer of glycosaminoglycans, gagCEST, is a quantitative MR technique that has potential for assessing cartilage proteoglycan content at field strengths of 7 T and higher. However, its utility at 3 T remains unclear. The objective of this work was to implement a rapid volumetric gagCEST sequence with higher gagCEST asymmetry at 3 T to evaluate its sensitivity to osteoarthritic changes in knee articular cartilage and in comparison with T2 and T1ρ measures. We hypothesize that gagCEST asymmetry at 3 T decreases with increasing severity of osteoarthritis (OA). Forty-two human volunteers, including 10 healthy subjects and 32 subjects with medial OA, were included in the study. Knee Injury and Osteoarthritis Outcome Scores (KOOS) were assessed for all subjects, and Kellgren-Lawrence grading was performed for OA volunteers. Healthy subjects were scanned consecutively at 3 T to assess the repeatability of the volumetric gagCEST sequence at 3 T. For healthy and OA subjects, gagCEST asymmetry and T2 and T1ρ relaxation times were calculated for the femoral articular cartilage to assess sensitivity to OA severity. Volumetric gagCEST imaging had higher gagCEST asymmetry than single-slice acquisitions (p = 0.015). The average scan-rescan coefficient of variation was 6.8%. There were no significant differences in average gagCEST asymmetry between younger and older healthy controls (p = 0.655) or between healthy controls and OA subjects (p = 0.310). T2 and T1ρ relaxation times were elevated in OA subjects (p < 0.001 for both) compared with healthy controls and both were moderately correlated with total KOOS scores (rho = -0.181 and rho = -0.332 respectively). The gagCEST technique developed here, with volumetric scan times under 10 min and high gagCEST asymmetry at 3 T, did not vary significantly between healthy subjects and those with mild-moderate OA. This further supports a limited utility for gagCEST imaging at 3 T for assessment of early changes in cartilage composition in OA.


Asunto(s)
Cartílago Articular/química , Glicosaminoglicanos , Articulación de la Rodilla/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Osteoartritis de la Rodilla/diagnóstico por imagen , Proteoglicanos/análisis , Adulto , Anciano , Femenino , Fémur/diagnóstico por imagen , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Osteoartritis de la Rodilla/metabolismo , Reproducibilidad de los Resultados
10.
J Magn Reson Imaging ; 51(3): 768-779, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31313397

RESUMEN

BACKGROUND: Super-resolution is an emerging method for enhancing MRI resolution; however, its impact on image quality is still unknown. PURPOSE: To evaluate MRI super-resolution using quantitative and qualitative metrics of cartilage morphometry, osteophyte detection, and global image blurring. STUDY TYPE: Retrospective. POPULATION: In all, 176 MRI studies of subjects at varying stages of osteoarthritis. FIELD STRENGTH/SEQUENCE: Original-resolution 3D double-echo steady-state (DESS) and DESS with 3× thicker slices retrospectively enhanced using super-resolution and tricubic interpolation (TCI) at 3T. ASSESSMENT: A quantitative comparison of femoral cartilage morphometry was performed for the original-resolution DESS, the super-resolution, and the TCI scans in 17 subjects. A reader study by three musculoskeletal radiologists assessed cartilage image quality, overall image sharpness, and osteophytes incidence in all three sets of scans. A referenceless blurring metric evaluated blurring in all three image dimensions for the three sets of scans. STATISTICAL TESTS: Mann-Whitney U-tests compared Dice coefficients (DC) of segmentation accuracy for the DESS, super-resolution, and TCI images, along with the image quality readings and blurring metrics. Sensitivity, specificity, and diagnostic odds ratio (DOR) with 95% confidence intervals compared osteophyte detection for the super-resolution and TCI images, with the original-resolution as a reference. RESULTS: DC for the original-resolution (90.2 ± 1.7%) and super-resolution (89.6 ± 2.0%) were significantly higher (P < 0.001) than TCI (86.3 ± 5.6%). Segmentation overlap of super-resolution with the original-resolution (DC = 97.6 ± 0.7%) was significantly higher (P < 0.0001) than TCI overlap (DC = 95.0 ± 1.1%). Cartilage image quality for sharpness and contrast levels, and the through-plane quantitative blur factor for super-resolution images, was significantly (P < 0.001) better than TCI. Super-resolution osteophyte detection sensitivity of 80% (76-82%), specificity of 93% (92-94%), and DOR of 32 (22-46) was significantly higher (P < 0.001) than TCI sensitivity of 73% (69-76%), specificity of 90% (89-91%), and DOR of 17 (13-22). DATA CONCLUSION: Super-resolution appears to consistently outperform naïve interpolation and may improve image quality without biasing quantitative biomarkers. LEVEL OF EVIDENCE: 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2020;51:768-779.


Asunto(s)
Aprendizaje Profundo , Osteoartritis , Biomarcadores , Humanos , Imagen por Resonancia Magnética , Osteoartritis/diagnóstico por imagen , Reproducibilidad de los Resultados , Estudios Retrospectivos
11.
Biomed Opt Express ; 9(12): 6038-6052, 2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-31065411

RESUMEN

Gestational age estimation at time of birth is critical for determining the degree of prematurity of the infant and for administering appropriate postnatal treatment. We present a fully automated algorithm for estimating gestational age of premature infants through smartphone lens imaging of the anterior lens capsule vasculature (ALCV). Our algorithm uses a fully convolutional network and blind image quality analyzers to segment usable anterior capsule regions. Then, it extracts ALCV features using a residual neural network architecture and trains on these features using a support vector machine-based classifier. The classification algorithm is validated using leave-one-out cross-validation on videos captured from 124 neonates. The algorithm is expected to be an influential tool for remote and point-of-care gestational age estimation of premature neonates in low-income countries. To this end, we have made the software open source.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...