Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
FEMS Microbiol Ecol ; 99(12)2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37951299

RESUMEN

We describe diazotrophs present during a 2015 GEOTRACES expedition through the Canadian Arctic Gateway (CAG) using nifH metabarcoding. In the less studied Labrador Sea, Bradyrhizobium sp. and Vitreoscilla sp. nifH variants were dominant, while in Baffin Bay, a Stutzerimonas stutzeri variant was dominant. In comparison, the Canadian Arctic Archipelago (CAA) was characterized by a broader set of dominant variants belonging to Desulfobulbaceae, Desulfuromonadales, Arcobacter sp., Vibrio spp., and Sulfuriferula sp. Although dominant diazotrophs fell within known nifH clusters I and III, only a few of these variants were frequently recovered in a 5-year weekly nifH times series in the coastal NW Atlantic presented herein, notably S. stutzeri and variants belonging to Desulfobacterales and Desulfuromonadales. In addition, the majority of dominant Arctic nifH variants shared low similarity (< 92% nucleotide identities) to sequences in a global noncyanobacterial diazotroph catalog recently compiled by others. We further detected UCYN-A throughout the CAG at low-levels using quantitative-PCR assays. Temperature, depth, salinity, oxygen, and nitrate were most strongly correlated to the Arctic diazotroph diversity observed, and we found a stark division between diazotroph communities of the Labrador Sea versus Baffin Bay and the CAA, hence establishing that a previously unknown biogeographic community division can occur for diazotrophs in the CAG.


Asunto(s)
Fijación del Nitrógeno , Nitrógeno , Filogenia , Canadá , Reacción en Cadena de la Polimerasa
2.
Sci Adv ; 9(39): eadh9768, 2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37774025

RESUMEN

UCYN-A is a globally important nitrogen-fixing symbiotic microbe often found in colder regions and coastal areas where nitrogen fixation has been overlooked. We present a 3-year coastal Northwest Atlantic time series of UCYN-A by integrating oceanographic data with weekly nifH and16S rRNA gene sequencing and quantitative PCR assays for UCYN-A ecotypes. High UCYN-A relative abundances dominated by A1 to A4 ecotypes reoccurred annually in the coastal Northwest Atlantic. Although UCYN-A was detected every summer/fall, the ability to observe separate ecotypes may be highly dependent on sampling time given intense interannual and weekly variability of ecotype-specific occurrences. Additionally, much of UCYN-A's rarer diversity was populated by short-lived neutral mutational variants, therefore providing insight into UCYN-A's microevolutionary patterns. For instance, rare ASVs exhibited community composition restructuring annually, while also sharing a common connection to a dominant ASV within each ecotype. Our study provides additional perspectives for interpreting UCYN-A intraspecific diversity and underscores the need for high-resolution datasets when deciphering spatiotemporal ecologies within UCYN-A.


Asunto(s)
Cianobacterias , Haptophyta , Ecotipo , Agua de Mar/microbiología , Factores de Tiempo , Haptophyta/genética , Haptophyta/microbiología , Cianobacterias/genética
3.
Environ Microbiol ; 25(7): 1300-1313, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36861357

RESUMEN

Cobalamin availability can influence primary productivity and ecological interactions in marine microbial communities. The characterization of cobalamin sources and sinks is a first step in investigating cobalamin dynamics and its impact on productivity. Here, we identify potential cobalamin sources and sinks on the Scotian Shelf and Slope in the Northwest Atlantic Ocean. Functional and taxonomic annotation of bulk metagenomic reads, combined with analysis of genome bins, were used to identify potential cobalamin sources and sinks. Cobalamin synthesis potential was mainly attributed to Rhodobacteraceae, Thaumarchaeota, and cyanobacteria (Synechococcus and Prochlorococcus). Cobalamin remodelling potential was mainly attributed to Alteromonadales, Pseudomonadales, Rhizobiales, Oceanospirilalles, Rhodobacteraceae, and Verrucomicrobia, while potential cobalamin consumers include Flavobacteriaceae, Actinobacteria, Porticoccaceae, Methylophiliaceae, and Thermoplasmatota. These complementary approaches identified taxa with the potential to be involved in cobalamin cycling on the Scotian Shelf and revealed genomic information required for further characterization. The Cob operon of Rhodobacterales bacterium HTCC2255, a strain with known importance in cobalamin cycling, was similar to a major cobalamin producer bin, suggesting that a related strain may represent a critical cobalamin source in this region. These results enable future inquiries that will enhance our understanding of how cobalamin shapes microbial interdependencies and productivity in this region.


Asunto(s)
Alphaproteobacteria , Flavobacteriaceae , Gammaproteobacteria , Synechococcus , Vitamina B 12 , Archaea/genética , Océano Atlántico
4.
Sensors (Basel) ; 23(4)2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36850721

RESUMEN

A vehicular Ad-Hoc Network (VANET) is a type of Mobile Ad-Hoc Networks (MANETs) that uses wireless routers inside each vehicle to act as a node. The need for effective solutions to urban traffic congestion issues has increased recently due to the growing number of automobile connections in the car communications system. To ensure a high level of service and avoid unsafe situations brought on by congestion or a broadcast storm, data dissemination in a VANET network requires an effective approach. Effective multi-objective optimization methods are required to tackle this because of the implied competing nature of multi-metric approaches. A meta-heuristic technique with a high level of solution interactions can handle efficient optimization. To accomplish this, a meta-heuristic search algorithm particle optimization was chosen. In this paper, we have created a network consisting of vehicles as nodes. The aim is to send emergency messages immediately to the stationary nodes. The normal messages will be sent to the FIFO queue. To send these messages to a destination node, multiple routes were found using Time delay-based Multipath Routing (TMR) method, and to find the optimal and secure path Particle Swarm Optimization (PSO) is used. Our method is compared with different optimization methods such as Ant Colony Optimization (ACO), Firefly Optimization (FFO), and Enhanced Flying Ant Colony Optimization (EFACO). Significant improvements in terms of throughput and packet loss ratio, reduced end-to-end delay, rounding overhead ratio, and the energy consumption are revealed by the experimental results.

5.
J Mol Neurosci ; 72(11): 2188-2206, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36370303

RESUMEN

With a reported rise in global air pollution, more than 50% of the population remains exposed to toxic air pollutants in the form of particulate matters (PMs). PMs, from various sources and of varying sizes, have a significant impact on health as long-time exposure to them has seen a correlation with various health hazards and have also been determined to be carcinogenic. In addition to disrupting known cellular pathways, PMs have also been associated with lncRNA dysregulation-a factor that increases predisposition towards the onset or progression of cancer. lncRNA dysregulation is further seen to mediate glioblastoma multiforme (GBM) progression. The vast array of information regarding cancer types including GBM and its various precursors can easily be obtained via innovative in silico approaches in the form of databases such as GEO and TCGA; however, a need to obtain selective and specific information correlating anthropogenic factors and disease progression-in the case of GBM-can serve as a critical tool to filter down and target specific PMs and lncRNAs responsible for regulating key cancer hallmarks in glioblastoma. The current review article proposes an in silico approach in the form of a database that reviews current updates on correlation of PMs with lncRNA dysregulation leading to GBM progression.


Asunto(s)
Neoplasias , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , Material Particulado/toxicidad
7.
Sci Rep ; 12(1): 15335, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-36097189

RESUMEN

Quantifying the temporal change of bacterial communities is essential to understanding how both natural and anthropogenic pressures impact the functions of coastal marine ecosystems. Here we use weekly microbial DNA sampling across four years to show that bacterial phyla have distinct seasonal niches, with a richness peak in winter (i.e., an inverse relationship with daylength). Our results suggest that seasonal fluctuations, rather than the kinetic energy or resource hypotheses, dominated the pattern of bacterial diversity. These findings supplement those from global analyses which lack temporal replication and present few data from winter months in polar and temperate regions. Centered log-ratio transformed data provided new insights into the seasonal niche partitioning of conditionally rare phyla, such as Modulibacteria, Verrucomicrobiota, Synergistota, Deinococcota, and Fermentibacterota. These patterns could not be identified using the standard practice of ASV generation followed by rarefaction. Our study provides evidence that five globally relevant ecotypes of chemolithoautotrophic bacteria from the SUP05 lineage comprise a significant functional group with varying seasonal dominance patterns in the Bedford Basin.


Asunto(s)
Ecotipo , Estuarios , Bacterias/genética , Ecosistema , Estaciones del Año
8.
Sci Rep ; 12(1): 13078, 2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35906469

RESUMEN

The planktonic diversity throughout the oceans is vital to ecosystem functioning and linked to environmental change. Plankton monitoring tools have advanced considerably with high-throughput in-situ digital cameras and genomic sequencing, opening new challenges for high-frequency observations of community composition, structure, and species discovery. Here, we combine multi-marker metabarcoding based on nuclear 18S (V4) and plastidial 16S (V4-V5) rRNA gene amplicons with a digital in-line holographic microscope to provide a synoptic diversity survey of eukaryotic plankton along the Newfoundland Shelf (Canada) during the winter transition phase of the North Atlantic bloom phenomenon. Metabarcoding revealed a rich eukaryotic diversity unidentifiable in the imaging samples, confirming the presence of ecologically important saprophytic protists which were unclassifiable in matching images, and detecting important groups unobserved or taxonomically unresolved during similar sequencing campaigns in the Northwest Atlantic Ocean. In turn, imaging analysis provided quantitative observations of widely prevalent plankton from every trophic level. Despite contrasting plankton compositions portrayed by each sampling method, both capture broad spatial differences between the northern and southern sectors of the Newfoundland Shelf and suggest complementary estimations of important features in eukaryotic assemblages. Future tasks will involve standardizing digital imaging and metabarcoding for wider use and consistent, comparable ocean observations.


Asunto(s)
Holografía , Plancton , Biodiversidad , Ecosistema , Eucariontes/genética , Terranova y Labrador , Plancton/genética
10.
Nat Commun ; 13(1): 342, 2022 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-35039521

RESUMEN

Identifying differentially abundant microbes is a common goal of microbiome studies. Multiple methods are used interchangeably for this purpose in the literature. Yet, there are few large-scale studies systematically exploring the appropriateness of using these tools interchangeably, and the scale and significance of the differences between them. Here, we compare the performance of 14 differential abundance testing methods on 38 16S rRNA gene datasets with two sample groups. We test for differences in amplicon sequence variants and operational taxonomic units (ASVs) between these groups. Our findings confirm that these tools identified drastically different numbers and sets of significant ASVs, and that results depend on data pre-processing. For many tools the number of features identified correlate with aspects of the data, such as sample size, sequencing depth, and effect size of community differences. ALDEx2 and ANCOM-II produce the most consistent results across studies and agree best with the intersect of results from different approaches. Nevertheless, we recommend that researchers should use a consensus approach based on multiple differential abundance methods to help ensure robust biological interpretations.


Asunto(s)
Bases de Datos Genéticas , Microbiota/genética , Análisis por Conglomerados , Simulación por Computador , Diarrea/genética , Variación Genética , Humanos , Filogenia , Análisis de Secuencia de ADN
11.
ISME J ; 16(2): 465-476, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34413475

RESUMEN

Oligotrophic ocean gyre ecosystems may be expanding due to rising global temperatures [1-5]. Models predicting carbon flow through these changing ecosystems require accurate descriptions of phytoplankton communities and their metabolic activities [6]. We therefore measured distributions and activities of cyanobacteria and small photosynthetic eukaryotes throughout the euphotic zone on a zonal transect through the South Pacific Ocean, focusing on the ultraoligotrophic waters of the South Pacific Gyre (SPG). Bulk rates of CO2 fixation were low (0.1 µmol C l-1 d-1) but pervasive throughout both the surface mixed-layer (upper 150 m), as well as the deep chlorophyll a maximum of the core SPG. Chloroplast 16S rRNA metabarcoding, and single-cell 13CO2 uptake experiments demonstrated niche differentiation among the small eukaryotes and picocyanobacteria. Prochlorococcus abundances, activity, and growth were more closely associated with the rims of the gyre. Small, fast-growing, photosynthetic eukaryotes, likely related to the Pelagophyceae, characterized the deep chlorophyll a maximum. In contrast, a slower growing population of photosynthetic eukaryotes, likely comprised of Dictyochophyceae and Chrysophyceae, dominated the mixed layer that contributed 65-88% of the areal CO2 fixation within the core SPG. Small photosynthetic eukaryotes may thus play an underappreciated role in CO2 fixation in the surface mixed-layer waters of ultraoligotrophic ecosystems.


Asunto(s)
Plancton , Prochlorococcus , Dióxido de Carbono/metabolismo , Clorofila A/metabolismo , Ecosistema , Océanos y Mares , Océano Pacífico , Plancton/metabolismo , Prochlorococcus/genética , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Agua de Mar/microbiología
12.
BMC Bioinformatics ; 21(1): 466, 2020 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-33076816

RESUMEN

BACKGROUND: Homology based methods are one of the most important and widely used approaches for functional annotation of high-throughput microbial genome data. A major limitation of these methods is the absence of well-characterized sequences for certain functions. The non-homology methods based on the context and the interactions of a protein are very useful for identifying missing metabolic activities and functional annotation in the absence of significant sequence similarity. In the current work, we employ both homology and context-based methods, incrementally, to identify local holes and chokepoints, whose presence in the Mycobacterium tuberculosis genome is indicated based on its interaction with known proteins in a metabolic network context, but have not been annotated. We have developed two computational procedures using network theory to identify orphan enzymes ('Hole finding protocol') coupled with the identification of candidate proteins for the predicted orphan enzyme ('Hole filling protocol'). We propose an integrated interaction score based on scores from the STRING database to identify candidate protein sequences for the orphan enzymes from M. tuberculosis, as a case study, which are most likely to perform the missing function. RESULTS: The application of an automated homology-based enzyme identification protocol, ModEnzA, on M. tuberculosis genome yielded 56 novel enzyme predictions. We further predicted 74 putative local holes, 6 choke points, and 3 high confidence local holes in the genome using 'Hole finding protocol'. The 'Hole-filling protocol' was validated on the E. coli genome using artificial in-silico enzyme knockouts where our method showed 25% increased accuracy, compared to other methods, in assigning the correct sequence for the knocked-out enzyme amongst the top 10 ranks. The method was further validated on 8 additional genomes. CONCLUSIONS: We have developed methods that can be generalized to augment homology-based annotation to identify missing enzyme coding genes and to predict a candidate protein for them. For pathogens such as M. tuberculosis, this work holds significance in terms of increasing the protein repertoire and thereby, the potential for identifying novel drug targets.


Asunto(s)
Proteínas Bacterianas/genética , Biología Computacional/métodos , Enzimas/genética , Mycobacterium tuberculosis/enzimología , Homología de Secuencia de Aminoácido , Secuencia de Aminoácidos , Bases de Datos Factuales , Escherichia coli/enzimología , Genoma Bacteriano , Anotación de Secuencia Molecular
13.
Environ Microbiol ; 21(10): 3927-3952, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31314947

RESUMEN

We present the first geomicrobiological characterization of the meromictic water column of Powell Lake (British Columbia, Canada), a former fjord, which has been stably stratified since the last glacial period. Its deepest layers (300-350 m) retain isolated, relict seawater from that period. Fine-scale vertical profiling of the water chemistry and microbial communities allowed subdivision of the water column into distinct geomicrobiological zones. These zones were further characterized by phylogenetic and functional marker genes from amplicon and shotgun metagenome sequencing. Binning of metagenomic reads allowed the linkage of function to specific taxonomic groups. Statistical analyses (analysis of similarities, Bray-Curtis similarity) confirmed that the microbial community structure followed closely the geochemical zonation. Yet, our characterization of the genetic potential relevant to carbon, nitrogen and sulphur cycling of each zone revealed unexpected features, including potential for facultative anaerobic methylotrophy, nitrogen fixation despite high ammonium concentrations and potential micro-aerobic nitrifiers within the chemocline. At the oxic-suboxic interface, facultative anaerobic potential was found in the widespread freshwater lineage acI (Actinobacteria), suggesting intriguing ecophysiological similarities to the marine SAR11. Evolutionary divergent lineages among diverse phyla were identified in the ancient seawater zone and may indicate novel adaptations to this unusual environment.


Asunto(s)
Bacterias/metabolismo , Carbono/análisis , Lagos/microbiología , Nitrógeno/análisis , Azufre/análisis , Bacterias/genética , Canadá , Metagenoma/genética , Microbiota/fisiología , Fijación del Nitrógeno/fisiología , Filogenia , Agua de Mar/química , Agua de Mar/microbiología , Agua/análisis
14.
Front Microbiol ; 10: 1566, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31354666

RESUMEN

Heme b is an iron-containing co-factor in hemoproteins. Heme b concentrations are low (<1 pmol L-1) in iron limited phytoplankton in cultures and in the field. Here, we determined heme b in marine particulate material (>0.7 µm) from the North Atlantic Ocean (GEOVIDE cruise - GEOTRACES section GA01), which spanned several biogeochemical regimes. We examined the relationship between heme b abundance and the microbial community composition, and its utility for mapping iron limited phytoplankton. Heme b concentrations ranged from 0.16 to 5.1 pmol L-1 (median = 2.0 pmol L-1, n = 62) in the surface mixed layer (SML) along the cruise track, driven mainly by variability in biomass. However, in the Irminger Basin, the lowest heme b levels (SML: median = 0.53 pmol L-1, n = 12) were observed, whilst the biomass was highest (particulate organic carbon, median = 14.2 µmol L-1, n = 25; chlorophyll a: median = 2.0 nmol L-1, n = 23) pointing to regulatory mechanisms of the heme b pool for growth conservation. Dissolved iron (DFe) was not depleted (SML: median = 0.38 nmol L-1, n = 11) in the Irminger Basin, but large diatoms (Rhizosolenia sp.) dominated. Hence, heme b depletion and regulation is likely to occur during bloom progression when phytoplankton class-dependent absolute iron requirements exceed the available ambient concentration of DFe. Furthermore, high heme b concentrations found in the Iceland Basin and Labrador Sea (median = 3.4 pmol L-1, n = 20), despite having similar DFe concentrations to the Irminger Basin, were attributed to an earlier growth phase of the extant phytoplankton populations. Thus, heme b provides a snapshot of the cellular activity in situ and could both be used as indicator of iron limitation and contribute to understanding phytoplankton adaptation mechanisms to changing iron supplies.

15.
FEMS Microbiol Lett ; 366(13)2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31344223

RESUMEN

Marine microbes play essential roles in global energy and nutrient cycles. A primary method of determining their diversity and distribution is through sequencing of 16S ribosomal RNA genes from environmental samples. However, the perceived community composition may vary significantly based on differences in methodology, including choice of 16S variable region(s). This study investigated the influence of 16S variable region selection (V4-V5 or V6-V8) on perceived community composition and diversity for bacteria, Archaea and chloroplasts by tag-Illumina sequencing. We used 24 samples from the photic zone of the Scotian Shelf, northwest Atlantic, collected during a spring phytoplankton bloom. Taxonomic assignment and community composition varied greatly depending on the choice of variable regions while observed patterns of beta diversity were reproducible between variable regions. V4-V5 was considered the preferred variable region for future studies based on its superior recognition of Archaea, which has received little attention in bloom dynamics. The V6-V8 region captured more of the bacterial diversity, including the abundant SAR11 clades and, to a lesser extent, that of chloroplasts. However, the magnitude of difference between variable regions for bacteria and chloroplast was less than for Archaea.


Asunto(s)
Organismos Acuáticos/clasificación , Organismos Acuáticos/genética , Microbiota , ARN Ribosómico 16S , Archaea/clasificación , Archaea/genética , Océano Atlántico , Bacterias/clasificación , Bacterias/genética , Biodiversidad , Metagenómica/métodos , Filogenia
16.
PLoS One ; 10(7): e0133526, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26192623

RESUMEN

Oxygen minimum zones are major sites of fixed nitrogen loss in the ocean. Recent studies have highlighted the importance of anaerobic ammonium oxidation, anammox, in pelagic nitrogen removal. Sources of ammonium for the anammox reaction, however, remain controversial, as heterotrophic denitrification and alternative anaerobic pathways of organic matter remineralization cannot account for the ammonium requirements of reported anammox rates. Here, we explore the significance of microaerobic respiration as a source of ammonium during organic matter degradation in the oxygen-deficient waters off Namibia and Peru. Experiments with additions of double-labelled oxygen revealed high aerobic activity in the upper OMZs, likely controlled by surface organic matter export. Consistently observed oxygen consumption in samples retrieved throughout the lower OMZs hints at efficient exploitation of vertically and laterally advected, oxygenated waters in this zone by aerobic microorganisms. In accordance, metagenomic and metatranscriptomic analyses identified genes encoding for aerobic terminal oxidases and demonstrated their expression by diverse microbial communities, even in virtually anoxic waters. Our results suggest that microaerobic respiration is a major mode of organic matter remineralization and source of ammonium (~45-100%) in the upper oxygen minimum zones, and reconcile hitherto observed mismatches between ammonium producing and consuming processes therein.


Asunto(s)
Compuestos de Amonio/metabolismo , Consumo de Oxígeno , Oxígeno/metabolismo , Agua de Mar/microbiología , Bacterias Aerobias/clasificación , Bacterias Aerobias/genética , Bacterias Aerobias/metabolismo , Bacterias Anaerobias/clasificación , Bacterias Anaerobias/genética , Bacterias Anaerobias/metabolismo , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Expresión Génica , Metagenoma/genética , Namibia , Océanos y Mares , Compuestos Orgánicos/metabolismo , Oxidación-Reducción , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Perú , Agua de Mar/química , Transcriptoma/genética
17.
PLoS One ; 8(8): e68661, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23990875

RESUMEN

In Eastern Boundary Upwelling Systems nutrient-rich waters are transported to the ocean surface, fuelling high photoautotrophic primary production. Subsequent heterotrophic decomposition of the produced biomass increases the oxygen-depletion at intermediate water depths, which can result in the formation of oxygen minimum zones (OMZ). OMZs can sporadically accumulate hydrogen sulfide (H2S), which is toxic to most multicellular organisms and has been implicated in massive fish kills. During a cruise to the OMZ off Peru in January 2009 we found a sulfidic plume in continental shelf waters, covering an area >5500 km(2), which contained ∼2.2×10(4) tons of H2S. This was the first time that H2S was measured in the Peruvian OMZ and with ∼440 km(3) the largest plume ever reported for oceanic waters. We assessed the phylogenetic and functional diversity of the inhabiting microbial community by high-throughput sequencing of DNA and RNA, while its metabolic activity was determined with rate measurements of carbon fixation and nitrogen transformation processes. The waters were dominated by several distinct γ-, δ- and ε-proteobacterial taxa associated with either sulfur oxidation or sulfate reduction. Our results suggest that these chemolithoautotrophic bacteria utilized several oxidants (oxygen, nitrate, nitrite, nitric oxide and nitrous oxide) to detoxify the sulfidic waters well below the oxic surface. The chemolithoautotrophic activity at our sampling site led to high rates of dark carbon fixation. Assuming that these chemolithoautotrophic rates were maintained throughout the sulfidic waters, they could be representing as much as ∼30% of the photoautotrophic carbon fixation. Postulated changes such as eutrophication and global warming, which lead to an expansion and intensification of OMZs, might also increase the frequency of sulfidic waters. We suggest that the chemolithoautotrophically fixed carbon may be involved in a negative feedback loop that could fuel further sulfate reduction and potentially stabilize the sulfidic OMZ waters.


Asunto(s)
Bacterias/genética , Crecimiento Quimioautotrófico/fisiología , Sulfuro de Hidrógeno/química , Oxígeno/química , Agua de Mar/química , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Biomasa , Ciclo del Carbono , Dióxido de Carbono/química , Análisis por Conglomerados , Coloides/química , Ecosistema , Citometría de Flujo/métodos , Genoma Bacteriano , Nitrógeno/química , Océano Pacífico , Perú , Filogenia , Análisis de Secuencia de ADN , Análisis de Secuencia de ARN , Sulfuros/química , Microbiología del Agua
18.
Bioinformatics ; 29(6): 790-1, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23303511

RESUMEN

MOTIVATION: The sheer scale of the metagenomic and metatranscriptomic datasets that are now available warrants the development of automated protocols for organizing, annotating and comparing the samples in terms of their metabolic profiles. We describe a user-friendly java program FROMP (Fragment Recruitment on Metabolic Pathways) for mapping and visualizing enzyme annotations onto the Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways or custom-made pathways and comparing the samples in terms of their Pathway Completeness Scores, their relative Activity Scores or enzyme enrichment odds ratios. This program along with our fully configurable PERL-based annotation organization pipeline Meta2Pro (METAbolic PROfiling of META-omic data) offers a quick and accurate standalone solution for metabolic profiling of environmental samples or cultures from different treatments. Apart from pictorial comparisons, FROMP can also generate score matrices for multiple meta-omics samples, which can be used directly by other statistical programs.


Asunto(s)
Redes y Vías Metabólicas/genética , Metaboloma/genética , Metagenómica/métodos , Programas Informáticos , Perfilación de la Expresión Génica , Metagenoma
19.
Front Microbiol ; 3: 362, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23087680

RESUMEN

Iron (Fe) is an essential micronutrient for many processes in all living cells. Dissolved Fe (dFe) concentrations in the ocean are of the order of a few nM, and Fe is often a factor limiting primary production. Bioavailability of Fe in aquatic environments is believed to be primarily controlled through chelation by Fe-binding ligands. Marine microbes have evolved different mechanisms to cope with the scarcity of bioavailable dFe. Gradients in dFe concentrations and diversity of the Fe-ligand pool from coastal to open ocean waters have presumably imposed selection pressures that should be reflected in the genomes of microbial communities inhabiting the pelagic realm. We applied a hidden Markov model (HMM)-based search for proteins related to cellular iron metabolism, and in particular those involved in Fe uptake mechanisms in 164 microbial genomes belonging to diverse taxa and occupying different aquatic niches. A multivariate statistical approach demonstrated that in phototrophic organisms, there is a clear influence of the ecological niche on the diversity of Fe uptake systems. Extending the analyses to the metagenome database from the Global Ocean Sampling expedition, we demonstrated that the Fe uptake and homeostasis mechanisms differed significantly across marine niches defined by temperatures and dFe concentrations, and that this difference was linked to the distribution of microbial taxa in these niches. Using the dN/dS ratios (which signify the rate of non-synonymous mutations) of the nucleotide sequences, we identified that genes encoding for TonB, Ferritin, Ferric reductase, IdiA, ZupT, and Fe(2+) transport proteins FeoA and FeoB were evolving at a faster rate (positive selection pressure) while genes encoding ferrisiderophore, heme and Vitamin B12 uptake systems, siderophore biosynthesis, and IsiA and IsiB were under purifying selection pressure (evolving slowly).

20.
Adv Bioinformatics ; 2011: 743782, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21541071

RESUMEN

Various enzyme identification protocols involving homology transfer by sequence-sequence or profile-sequence comparisons have been devised which utilise Swiss-Prot sequences associated with EC numbers as the training set. A profile HMM constructed for a particular EC number might select sequences which perform a different enzymatic function due to the presence of certain fold-specific residues which are conserved in enzymes sharing a common fold. We describe a protocol, ModEnzA (HMM-ModE Enzyme Annotation), which generates profile HMMs highly specific at a functional level as defined by the EC numbers by incorporating information from negative training sequences. We enrich the training dataset by mining sequences from the NCBI Non-Redundant database for increased sensitivity. We compare our method with other enzyme identification methods, both for assigning EC numbers to a genome as well as identifying protein sequences associated with an enzymatic activity. We report a sensitivity of 88% and specificity of 95% in identifying EC numbers and annotating enzymatic sequences from the E. coli genome which is higher than any other method. With the next-generation sequencing methods producing a huge amount of sequence data, the development and use of fully automated yet accurate protocols such as ModEnzA is warranted for rapid annotation of newly sequenced genomes and metagenomic sequences.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...