Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neuroimage Clin ; 42: 103602, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38593534

RESUMEN

Discourse is a fundamentally important aspect of communication, and discourse production provides a wealth of information about linguistic ability. Aphasia commonly affects, in multiple ways, the ability to produce discourse. Comprehensive aphasia assessments such as the Western Aphasia Battery-Revised (WAB-R) are time- and resource-intensive. We examined whether discourse measures can be used to estimate WAB-R Aphasia Quotient (AQ), and whether this can serve as an ecologically valid, less resource-intensive measure. We used features extracted from discourse tasks using three AphasiaBank prompts involving expositional (picture description), story narrative, and procedural discourse. These features were used to train a machine learning model to predict the WAB-R AQ. We also compared and supplemented the model with lesion location information from structural neuroimaging. We found that discourse-based models could estimate AQ well, and that they outperformed models based on lesion features. Addition of lesion features to the discourse features did not improve the performance of the discourse model substantially. Inspection of the most informative discourse features revealed that different prompt types taxed different aspects of language. These findings suggest that discourse can be used to estimate aphasia severity, and provide insight into the linguistic content elicited by different types of discourse prompts.


Asunto(s)
Afasia , Aprendizaje Automático , Humanos , Afasia/fisiopatología , Afasia/diagnóstico por imagen , Afasia/etiología , Masculino , Femenino , Persona de Mediana Edad , Anciano , Adulto , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Imagen por Resonancia Magnética/métodos , Pruebas del Lenguaje , Pruebas Neuropsicológicas
2.
Brain Struct Funct ; 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-38160205

RESUMEN

INTRODUCTION: Aphasia is a speech-language impairment commonly caused by damage to the left hemisphere. The neural mechanisms that underpin different types of aphasia and their symptoms are still not fully understood. This study aims to identify differences in resting-state functional connectivity between anomic and Broca's aphasia measured through resting-state functional magnetic resonance imaging (rs-fMRI). METHODS: We used the network-based statistic (NBS) method, as well as voxel- and connectome-based lesion symptom mapping (V-, CLSM), to identify distinct neural correlates of the anomic and Broca's groups. To control for lesion effect, we included lesion volume as a covariate in both the NBS method and LSM. RESULTS: NBS identified a subnetwork located in the dorsal language stream bilaterally, including supramarginal gyrus, primary sensory, motor, and auditory cortices, and insula. The connections in the subnetwork were weaker in the Broca's group than the anomic group. The properties of the subnetwork were examined through complex network measures, which indicated that regions in right inferior frontal sulcus, right paracentral lobule, and bilateral superior temporal gyrus exhibit intensive interaction. Left superior temporal gyrus, right postcentral gyrus, and left supramarginal gyrus play an important role in information flow and overall communication efficiency. Disruption of this network underlies the constellation of symptoms associated with Broca's aphasia. Whole-brain CLSM did not detect any significant connections, suggesting an advantage of NBS when thousands of connections are considered. However, CLSM identified connections that differentiated Broca's from anomic aphasia when analysis was restricted to a hypothesized network of interest. DISCUSSION: We identified novel signatures of resting-state brain network differences between groups of individuals with anomic and Broca's aphasia. We identified a subnetwork of connections that statistically differentiated the resting-state brain networks of the two groups, in comparison with standard CLSM results that yielded isolated connections. Network-level analyses are useful tools for the investigation of the neural correlates of language deficits post-stroke.

3.
ArXiv ; 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37961747

RESUMEN

Persistent homology (PH) characterizes the shape of brain networks through the persistence features. Group comparison of persistence features from brain networks can be challenging as they are inherently heterogeneous. A recent scale-space representation of persistence diagram (PD) through heat diffusion reparameterizes using the finite number of Fourier coefficients with respect to the Laplace-Beltrami (LB) eigenfunction expansion of the domain, which provides a powerful vectorized algebraic representation for group comparisons of PDs. In this study, we advance a transposition-based permutation test for comparing multiple groups of PDs through the heat-diffusion estimates of the PDs. We evaluate the empirical performance of the spectral transposition test in capturing within- and between-group similarity and dissimilarity with respect to statistical variation of topological noise and hole location. We also illustrate how the method extends naturally into a clustering scheme by subtyping individuals with post-stroke aphasia through the PDs of their resting-state functional brain networks.

4.
Sci Rep ; 13(1): 16658, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37789056

RESUMEN

Evidence suggests that perceptual and action related features of concepts are grounded in the corresponding sensory-motor networks in the human brain. However, less is known about temporal features of event concepts (e.g., a lecture) and whether they are grounded in time perception networks. We examined this question by stimulating the right dorsolateral prefrontal cortex (rDLPFC)-a part of time perception network-using HD-tDCS and subsequently recording EEG while participants performed semantic and time perception tasks. Semantic tasks were composed of event noun duration judgment (EDur), object noun size judgement (OSize), event (EVal) and object noun valence judgement. In the time perception task, participants judged the durations of pure tones. Results showed that cathodal stimulation accelerated responses for time perception task and decreased the magnitude of global field power (GFP) compared to sham stimulation. Semantic tasks results revealed that cathodal, but not sham, stimulation significantly decreased GFP for EDur relative to OSize, and to EVal. These findings provide first causal evidence that temporal features of event words are grounded in the rDLPFC as part of the temporal cognition network and shed light on the conceptual processing of time.


Asunto(s)
Percepción del Tiempo , Estimulación Transcraneal de Corriente Directa , Humanos , Percepción del Tiempo/fisiología , Estimulación Transcraneal de Corriente Directa/métodos , Corteza Prefrontal/fisiología , Cognición/fisiología , Juicio
5.
Brain Lang ; 246: 105328, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37847931

RESUMEN

Events are a fundamentally important part of our understanding of the world. How lexical concepts denoting events are represented in the brain remains controversial. We conducted two experiments using event and object nouns matched on a range of psycholinguistic variables, including concreteness, to examine spatial and temporal characteristics of event concepts. Both experiments used magnitude and valence tasks on event and object nouns. The fMRI experiment revealed a distributed set of regions for events, including the angular gyrus, anterior temporal lobe, and posterior cingulate across tasks. In the EEG experiment, events and objects differed in amplitude within the 300-500 ms window. Together these results shed light into the spatiotemporal characteristics of event concept representation and show that event concepts are represented in the putative hubs of the semantic system. While these hubs are typically associated with object semantics, they also represent events, and have a likely role in temporal integration.


Asunto(s)
Mapeo Encefálico , Encéfalo , Humanos , Encéfalo/diagnóstico por imagen , Semántica , Lenguaje , Lóbulo Parietal , Imagen por Resonancia Magnética
6.
ArXiv ; 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36798458

RESUMEN

Aphasia is a speech-language impairment commonly caused by damage to the left hemisphere. Due to the complexity of speech-language processing, the neural mechanisms that underpin various symptoms between different types of aphasia are still not fully understood. We used the network-based statistic method to identify distinct subnetwork(s) of connections differentiating the resting-state functional networks of the anomic and Broca groups. We identified one such subnetwork that mainly involved the brain regions in the premotor, primary motor, primary auditory, and primary sensory cortices in both hemispheres. The majority of connections in the subnetwork were weaker in the Broca group than the anomic group. The network properties of the subnetwork were examined through complex network measures, which indicated that the regions in the superior temporal gyrus and auditory cortex bilaterally exhibit intensive interaction, and primary motor, premotor and primary sensory cortices in the left hemisphere play an important role in information flow and overall communication efficiency. These findings underlied articulatory difficulties and reduced repetition performance in Broca aphasia, which are rarely observed in anomic aphasia. This research provides novel findings into the resting-state brain network differences between groups of individuals with anomic and Broca aphasia. We identified a subnetwork of, rather than isolated, connections that statistically differentiate the resting-state brain networks of the two groups, in comparison with standard lesion symptom mapping results that yield isolated connections.

7.
Brain Lang ; 237: 105220, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36587493

RESUMEN

Experimental evidence suggests that modality-specific concept features such as action, motion, and sound partially rely on corresponding action/perception neural networks in the human brain.Little is known, however, about time-related features of concepts. We examined whether temporal features of concepts recruit networks that subserve time perception in the brain in an EEG study using event and object nouns. Results showed significantly larger ERPs for event duration vs object size judgments over right parietal electrodes, a region associated with temporal processing. Additionally, alpha/beta (10-15 Hz) neural oscillation showed a stronger desynchronization for event duration compared to object size in the right parietal electrodes. This difference was not seen in control tasks comparing event vs object valence, suggesting that it is not likely to reflect a general difference between event and object nouns. These results indicate that temporal features of words may be subserved by time perception circuits in the human brain.


Asunto(s)
Percepción del Tiempo , Humanos , Semántica , Encéfalo , Lenguaje , Mapeo Encefálico , Electroencefalografía
8.
Behav Res Methods ; 55(6): 2853-2884, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-35971041

RESUMEN

The number of databases that provide various measurements of lexical properties for psycholinguistic research has increased rapidly in recent years. The proliferation of lexical variables, and the multitude of associated databases, makes the choice, comparison, and standardization of these variables in psycholinguistic research increasingly difficult. Here, we introduce The South Carolina Psycholinguistic Metabase (SCOPE), which is a metabase (or a meta-database) containing an extensive, curated collection of psycholinguistic variable values from major databases. The metabase currently contains 245 lexical variables, organized into seven major categories: General (e.g., frequency), Orthographic (e.g., bigram frequency), Phonological (e.g., phonological uniqueness point), Orth-Phon (e.g., consistency), Semantic (e.g., concreteness), Morphological (e.g., number of morphemes), and Response variables (e.g., lexical decision latency). We hope that SCOPE will become a valuable resource for researchers in psycholinguistics and affiliated disciplines such as cognitive neuroscience of language, computational linguistics, and communication disorders. The availability and ease of use of the metabase with comprehensive set of variables can facilitate the understanding of the unique contribution of each of the variables to word processing, and that of interactions between variables, as well as new insights and development of improved models and theories of word processing. It can also help standardize practice in psycholinguistics. We demonstrate use of the metabase by measuring relationships between variables in multiple ways and testing their individual contribution towards a number of dependent measures, in the most comprehensive analysis of this kind to date. The metabase is freely available at go.sc.edu/scope.


Asunto(s)
Lenguaje , Psicolingüística , Humanos , South Carolina , Lingüística , Semántica
9.
Brain Struct Funct ; 228(1): 239-254, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36372812

RESUMEN

Proper names are an important part of language and communication. They are thought to have a special status due to their neuropsychological and psycholinguistic profile. To what extent proper names rely on the same semantic system as common names is not clear. In an fMRI study, we presented the same group of participants with both proper and common names to compare the associated activations. Both person and place names, as well as personally familiar and famous names were used, and compared with words representing concrete and abstract concepts. A whole-brain analysis was followed by a detailed analysis of subdivisions of four regions of interest known to play a central role in the semantic system: angular gyrus, anterior temporal lobe, posterior cingulate complex, and medial temporal lobe. We found that most subdivisions within these regions bilaterally were activated by both proper names and common names. The bilateral perirhinal and right entorhinal cortex showed a response specific to proper names, suggesting an item-specific role in retrieving person and place related information. While activation to person and place names overlapped greatly, place names were differentiated by activating areas associated with spatial memory and navigation. Person names showed greater right hemisphere involvement compared to places, suggesting a wider range of associations. Personally familiar names showed stronger activation bilaterally compared to famous names, indicating representations that are enhanced by autobiographic and episodic details. Both proper and common names are processed in the wider semantic system that contains associative, episodic, and spatial components. Processing of proper names is characterized by a somewhat stronger involvement these components, rather than by a fundamentally different system.


Asunto(s)
Semántica , Lóbulo Temporal , Humanos , Lóbulo Temporal/fisiología , Encéfalo/fisiología , Lenguaje , Corteza Entorrinal , Imagen por Resonancia Magnética
10.
Front Hum Neurosci ; 16: 959455, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36248688

RESUMEN

The contribution of action-perception systems of the brain to lexical semantics remains controversial. Here, we used high-definition transcranial direct current stimulation (HD-tDCS) in healthy adults to examine the role of primary (left hand motor area; HMA) and higher-order (left anterior inferior parietal lobe; aIPL) action areas in action-related word processing (action verbs and manipulable nouns) compared to non-action-related control words (non-action verbs and non-manipulable nouns). We investigated stimulation-related effects at three levels of semantic processing: subliminal, implicit, and explicit. Broadly, we found that stimulation of HMA and aIPL resulted in relative facilitation of action-related language processing compared to non-action. HMA stimulation facilitated action verb processing in subliminal and implicit task contexts, suggesting that HMA helps represent action verbs even in semantically shallow tasks. HMA stimulation also facilitated manipulable noun comprehension in an explicit semantic task, suggesting that HMA contributes to manipulable noun comprehension when semantic demands are high. aIPL stimulation facilitated both manipulable noun and action verb processing during an implicit task. We suggest that both HMA and aIPL play a functional role in action semantics. HMA plays a general role in the semantics of actions and manipulable objects, while aIPL is important only when visuo-motor coordination is required for the action.

11.
Cortex ; 156: 126-143, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36244204

RESUMEN

Semantic processing is a central component of language and cognition. The anterior temporal lobe is postulated to be a key hub for semantic processing, but the posterior temporoparietal cortex is also involved in thematic associations during language. It is possible that these regions act in concert and depend on an anteroposterior network linking the temporal pole with posterior structures to support thematic semantic processing during language production. We employed connectome-based lesion-symptom mapping to examine the causal relationship between lesioned white matter pathways and thematic processing language deficits among individuals with post-stroke aphasia. Seventy-nine adults with chronic aphasia completed the Philadelphia Naming Test, and semantic errors were coded as either thematic or taxonomic to control for taxonomic errors. Controlling for nonverbal conceptual-semantic knowledge as measured by the Pyramids and Palm Trees Test, lesion size, and the taxonomic error rate, thematic error rate was associated with loss of white matter connections from the temporal pole traversing in peri-Sylvian regions to the posterior cingulate and the insula. These findings support the existence of a distributed network underlying thematic relationship processing in language as opposed to discrete cortical areas.


Asunto(s)
Afasia , Conectoma , Humanos , Adulto , Lenguaje , Semántica , Mapeo Encefálico , Imagen por Resonancia Magnética , Afasia/etiología , Redes Neurales de la Computación
12.
Neurobiol Lang (Camb) ; 3(2): 318-344, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37215558

RESUMEN

The role of left inferior frontal cortex (LIFC) in canonical sentence comprehension is controversial. Many studies have found involvement of LIFC in sentence production or complex sentence comprehension, but negative or mixed results are often found in comprehension of simple or canonical sentences. We used voxel-, region-, and connectivity-based lesion symptom mapping (VLSM, RLSM, CLSM) in left-hemisphere chronic stroke survivors to investigate canonical sentence comprehension while controlling for lexical-semantic, executive, and phonological processes. We investigated how damage and disrupted white matter connectivity of LIFC and two other language-related regions, the left anterior temporal lobe (LATL) and posterior temporal-inferior parietal area (LpT-iP), affected sentence comprehension. VLSM and RLSM revealed that LIFC damage was not associated with canonical sentence comprehension measured by a sensibility judgment task. LIFC damage was associated instead with impairments in a lexical semantic similarity judgment task with high semantic/executive demands. Damage to the LpT-iP, specifically posterior middle temporal gyrus (pMTG), predicted worse sentence comprehension after controlling for visual lexical access, semantic knowledge, and auditory-verbal short-term memory (STM), but not auditory single-word comprehension, suggesting pMTG is vital for auditory language comprehension. CLSM revealed that disruption of left-lateralized white-matter connections from LIFC to LATL and LpT-iP was associated with worse sentence comprehension, controlling for performance in tasks related to lexical access, auditory word comprehension, and auditory-verbal STM. However, the LIFC connections were accounted for by the lexical semantic similarity judgment task, which had high semantic/executive demands. This suggests that LIFC connectivity is relevant to canonical sentence comprehension when task-related semantic/executive demands are high.

13.
Psychol Res ; 86(8): 2417-2433, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34762153

RESUMEN

concepts can potentially be represented using metaphorical mappings to concrete domains. This view predicts that when linguistic metaphors are processed, they will invoke sensory-motor simulations. Here, I examine evidence from neuroimaging and lesion studies that addresses whether metaphors in language are embodied in this manner. Given the controversy in this area, I first outline some criteria by which the quality of neuroimaging and lesion studies might be evaluated. I then review studies of metaphors in various sensory-motor domains, such as action, motion, texture, taste, and time, and examine their strengths and weaknesses. Studies of idioms are evaluated next. I also address some neuroimaging studies that can speak to the question of metaphoric conceptual organization without explicit use of linguistic metaphors. I conclude that the weight of the evidence suggests that metaphors are indeed grounded in sensory-motor systems. The case of idioms is less clear, and I suggest that they might be grounded in a qualitatively different manner than metaphors at higher levels of the action hierarchy. While metaphors are unlikely to explain all aspects of abstract concept representation, for some specific abstract concepts, there is also nonlinguistic neural evidence for metaphoric conceptual organization.


Asunto(s)
Lenguaje , Metáfora , Humanos , Formación de Concepto , Lingüística
14.
Neuropsychologia ; 159: 107955, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34252418

RESUMEN

The extent to which action and perception systems of the brain are involved in semantic comprehension remains controversial. Whether figurative language, such as metaphors and idioms, is grounded in sensory-motor systems is especially contentious. Here, we used high-definition transcranial direct current stimulation (HD-tDCS) in healthy adults to examine the role of the left-hemisphere motor cortex during the comprehension of action sentences, relative to comprehension of sentences with visual verbs. Action sentences were divided into three types: literal, metaphoric, or idiomatic. This allowed us to ask whether processing of action verbs used in figurative contexts relies on motor cortex. The results revealed that action sentence comprehension response times were facilitated relative to the visual sentence control. Significant interaction relative to visual sentences was observed for literal, metaphoric, and idiomatic action sentences with HD-tDCS of the motor cortex. These results suggest that the left motor cortex is functionally involved in action sentence comprehension. Furthermore, this involvement exists when the action content of the sentences is figurative, for both idiomatic and metaphoric cases. The results provide evidence for functional links between conceptual and action systems of the brain.


Asunto(s)
Corteza Motora , Estimulación Transcraneal de Corriente Directa , Adulto , Mapeo Encefálico , Comprensión , Humanos , Lenguaje , Metáfora , Tiempo de Reacción , Semántica
15.
Lang Cogn Neurosci ; 35(5): 583-594, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33015218

RESUMEN

Word frequency is a central psycholinguistic variable that accounts for substantial variance in language processing. A number of neuroimaging studies have examined frequency at a single word level, typically demonstrating a strong negative, and sometimes positive correlation between frequency and hemodynamic response. Here, 40 subjects read passages of text in an MRI scanner while their eye movements were recorded. We used fixation-related analysis to identify neural activity tied to the frequency of each fixated word. We found that negative correlations with frequency were reduced, while strong positive correlations were found in the temporal and parietal areas associated with semantics. We propose that the processing cost of low frequency words is reduced due to contextual cues. Meanings of high frequency words are more readily accessed and integrated with context resulting in enhanced processing in the semantic system. The results demonstrate similarities and differences between single word and naturalistic text processing.

16.
Neuropsychologia ; 133: 107183, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31493413

RESUMEN

Studies on the organization of conceptual knowledge have examined categories of concrete nouns extensively. Less is known about the neural basis of verb categories suggested by linguistic theories. We used functional MRI to examine the differences between manner verbs, which encode information about the manner of an action, versus instrument verbs, which encode information about an object as part of their meaning. Using both visual and verbal stimuli and a combination of univariate and multivariate pattern analyses, our results show that accessing conceptual representations of instrument class involves brain regions typically associated with complex action and object perception, including the anterior inferior parietal cortex and occipito-temporal cortex. On the other hand, accessing conceptual representations of the manner class involves regions that are commonly associated with the processing of visual and biological motion, in the posterior superior temporal sulcus. These findings support the idea that the semantics of manner and instrument verbs are supported by distinct neural mechanisms.


Asunto(s)
Encéfalo/fisiología , Formación de Concepto/fisiología , Lenguaje , Adulto , Encéfalo/diagnóstico por imagen , Femenino , Neuroimagen Funcional , Humanos , Conocimiento , Imagen por Resonancia Magnética , Masculino , Lóbulo Occipital/diagnóstico por imagen , Lóbulo Occipital/fisiología , Lóbulo Parietal/diagnóstico por imagen , Lóbulo Parietal/fisiología , Semántica , Lóbulo Temporal/diagnóstico por imagen , Lóbulo Temporal/fisiología , Adulto Joven
17.
Cortex ; 120: 131-146, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31302507

RESUMEN

The neural bases of action and abstract concept representations remain a topic of debate. While several lines of research provide evidence for grounding of action-related conceptual content into sensory-motor systems, results of traditional lesion-deficit studies have been somewhat inconsistent. Further, few studies have directly compared the neural substrates of action and relatively abstract verb comprehension post-stroke. Here, we investigated the impact of the disruption of two neural networks on comprehension of action and relatively abstract verbs in 48 unilateral left-hemisphere stroke patients using two methodologies: 1) lesion-deficit association and 2) resting-state functional connectivity (RSFC) analyses. Disruption of RSFC between the left inferior frontal gyrus and right hemisphere primary and secondary sensory-motor areas predicted greater relative impairment of action semantics. Voxel-based lesion-symptom mapping revealed that damage to frontal white matter, extending towards the inferior frontal gyrus, also predicted greater relative impairment of action semantics. On the other hand, damage to the left anterior middle temporal gyrus significantly impaired the more abstract category relative to action. These findings support the view that action and non-action/abstract semantic processing rely on partially dissociable brain networks, with action concepts relying more heavily on sensory-motor areas. The results also have wider implications for lesion-deficit association studies and show how the contralateral hemisphere can play a compensatory role following unilateral stroke.


Asunto(s)
Comprensión , Lenguaje , Accidente Cerebrovascular/psicología , Mapeo Encefálico , Femenino , Lóbulo Frontal/diagnóstico por imagen , Lóbulo Frontal/fisiopatología , Humanos , Juicio , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiopatología , Pruebas Neuropsicológicas , Psicolingüística , Desempeño Psicomotor , Semántica , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/fisiopatología , Lóbulo Temporal/diagnóstico por imagen , Lóbulo Temporal/fisiopatología , Sustancia Blanca/fisiopatología
18.
Brain Res ; 1714: 202-209, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30853628

RESUMEN

The timing of sensory-motor activation during the comprehension of action verbs used in a metaphorical sense is not well understood. In the present Event Related Potential (ERP) study, participants read verbs in metaphoric (The church bent the rules), literal-concrete (The bodyguard bent the rod), and literal-abstract (The church altered the rules) conditions. The literal concreteness effect, obtained by subtracting the abstract from the concrete, was revealed as an N400, frontally distributed. A metaphoric effect, obtained in the metaphor-abstract contrast, was a widespread N400, and included the frontal response seen in the literal concreteness effect. Another metaphoric effect, obtained in the metaphor-concrete contrast, was a posterior N400. Further time window analyses showed that the literal concreteness effect primarily came from 200 to 300 ms, the metaphoric-concrete effect primarily came from 200 to 400 ms, and the metaphoric-abstract effect was significant throughout 200-500 ms. These results suggest that a concrete but underspecified meaning consistent with metaphoric and literal readings, was activated early and was sustained throughout the 200-500 ms window. We concluded that the metaphoric sense is based in concrete action semantics, even if these senses are underspecified.


Asunto(s)
Comprensión/fisiología , Potenciales Evocados/fisiología , Mapeo Encefálico/métodos , Electroencefalografía/métodos , Femenino , Humanos , Masculino , Metáfora , Tiempo de Reacción/fisiología , Semántica , Adulto Joven
19.
Front Psychol ; 10: 371, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30863346

RESUMEN

There is evidence that the motor cortex is involved in reading sentences containing an action verb ("The spike was hammered into the ground") as well as metaphoric sentences ("The army was hammered in the battle"). Verbs such as 'hammered' may be homonyms, with separate meanings belonging to the literal action and metaphoric action, or they may be polysemous, with the metaphoric sense grounded in the literal sense. We investigated the time course of the effects of single-pulse transcranial magnetic stimulation to primary motor cortex on literal and metaphoric sentence comprehension. Stimulation 300 ms post-verb presentation impaired comprehension of both literal and metaphoric sentences, supporting a causal role of sensory-motor areas in comprehension. Results suggest that the literal meaning of an action verb remains activated during metaphor comprehension, even after the temporal window of homonym disambiguation. This suggests that such verbs are polysemous, and both senses are related and grounded in motor cortex.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...