Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur J Nutr ; 61(8): 4179-4190, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35864340

RESUMEN

PURPOSE: Agaro-oligosaccharides (AGO), hydrolysis products of agarose, is known to have antioxidant and anti-inflammatory properties. Speculating that AGO is effective for preventing aging, we investigated the longevity-supporting effects of AGO and their mechanisms using Caenorhabditis elegans. METHODS: Caenorhabditis elegans were fed AGO from young adulthood. The lifespan, locomotory activity, lipofuscin accumulation, and heat stress resistance of the worms were examined. To elucidate mechanisms of AGO-mediated longevity, we conducted comprehensive expression analysis using microarrays. Moreover, we used quantitative real-time PCR (qRT-PCR) to verify the genes showing differential expression levels. Furthermore, we measured the lifespan of loss-of-function mutants to determine the genes related to AGO-mediated longevity. RESULTS: AGO extended the lifespan of C. elegans, reduced lipofuscin accumulation, and maintained vigorous locomotion. The microarray analysis revealed that the endoplasmic reticulum-unfolded protein response (ER-UPR) and insulin/insulin-like growth factor-1-mediated signaling (IIS) pathway were activated in AGO-fed worms. The qRT-PCR analysis showed that AGO treatment suppressed sir-2.1 expression, which is a negative regulator of ER-UPR. In loss-of-function mutant of sir-2.1, AGO-induced longevity and heat stress resistance were decreased or cancelled completely. Furthermore, the pro-longevity effect of AGO was decreased in loss-of-function mutants of abnormal Dauer formation (daf) -2 and daf-16, which are IIS pathway-related genes. CONCLUSION: AGO delays the C. elegans aging process and extends their lifespan through the activations of ER-UPR and the IIS pathway.


Asunto(s)
Proteínas de Caenorhabditis elegans , Insulinas , Sirtuinas , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Longevidad/fisiología , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Agar/metabolismo , Agar/farmacología , Antioxidantes/farmacología , Sefarosa/metabolismo , Sefarosa/farmacología , Lipofuscina/metabolismo , Lipofuscina/farmacología , Respuesta de Proteína Desplegada , Oligosacáridos/farmacología , Oligosacáridos/metabolismo , Insulinas/genética , Insulinas/metabolismo , Insulinas/farmacología , Factores de Transcripción Forkhead/genética , Sirtuinas/genética , Sirtuinas/metabolismo
2.
Plant Foods Hum Nutr ; 77(1): 90-97, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35088214

RESUMEN

Betalain pigments are mainly produced by plants belonging to the order of Caryophyllales. Betalains exhibit strong antioxidant activity and responds to environmental stimuli and stress in plants. Recent reports of antioxidant, anti-inflammatory and anti-cancer properties of betalain pigments have piqued interest in understanding their biological functions. We investigated the effects of betalain pigments (betanin and isobetanin) derived from red-beet on amyloid-ß (Aß) aggregation, which causes Alzheimer's disease. Non-specific inhibition of Aß aggregation against Aß40 and Aß42 by red-beet betalain pigments, in vitro was demonstrated using the thioflavin t fluorescence assay, circular dichroism spectroscopy analysis, transmission electron microscopy and nuclear magnetic resonance (NMR) analysis. Furthermore, we examined the ability of red-beet betalain pigments to interfere with Aß toxicity by using the transgenic Caenorhabditis elegans model, which expresses the human Aß42 protein intracellularly within the body wall muscle. It responds to Aß-toxicity with paralysis and treatment with 50 µM red-beet betalain pigments significantly delayed the paralysis of C. elegans. These results suggest that betalain pigments reduce Aß-induced toxicity.


Asunto(s)
Beta vulgaris , Betalaínas , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/toxicidad , Animales , Antioxidantes/farmacología , Beta vulgaris/química , Betalaínas/análisis , Betalaínas/química , Betalaínas/farmacología , Caenorhabditis elegans/metabolismo , Parálisis/inducido químicamente
3.
J Clin Biochem Nutr ; 70(1): 7-13, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35068675

RESUMEN

Streptococcus thermophilus bacteria, which are widely used as fermented starter for dairy production, exert various beneficial health effects. Nevertheless, even though pro-longevity effects of various probiotics have been reported, no report has described Streptococcus thermophilus effects on longevity. This study was conducted to evaluate Streptococcus thermophilus effects on lifespan extension and to elucidate the Streptococcus thermophilus-mediated longevity mechanism using Caenorhabditis elegans worms as a model animal. They were fed standard food (Escherichia coli OP50) or Streptococcus thermophilus from the young adult stage. Feeding with Streptococcus thermophilus, compared to Escherichia coli OP50, to Caenorhabditis elegans extend the lifespan, reduced lipofuscin accumulation, and maintain vigorous locomotion. Feeding with Streptococcus thermophilus did not alter the worm growth curve or the offspring number, indicating that the Streptococcus thermophilus-mediated lifespan extension is not attributable to caloric restriction. The qRT-PCR data showed that Streptococcus thermophilus increased the expression of daf-16 and some of its downstream antioxidant genes. Furthermore, the pro-longevity effects of Streptococcus thermophilus were decreased in loss-of-function mutant of daf-16. Results show that Streptococcus thermophilus extends the lifespan of Caenorhabditis elegans through DAF-16-mediated antioxidant pathway activation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...