Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Cancers (Basel) ; 16(13)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-39001498

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) presents significant oncological challenges due to its aggressive nature and poor prognosis. The tumor microenvironment (TME) plays a critical role in progression and treatment resistance. Non-neoplastic cells, such as cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs), contribute to tumor growth, angiogenesis, and immune evasion. Although immune cells infiltrate TME, tumor cells evade immune responses by secreting chemokines and expressing immune checkpoint inhibitors (ICIs). Vascular components, like endothelial cells and pericytes, stimulate angiogenesis to support tumor growth, while adipocytes secrete factors that promote cell growth, invasion, and treatment resistance. Additionally, perineural invasion, a characteristic feature of PDAC, contributes to local recurrence and poor prognosis. Moreover, key signaling pathways including Kirsten rat sarcoma viral oncogene (KRAS), transforming growth factor beta (TGF-ß), Notch, hypoxia-inducible factor (HIF), and Wnt/ß-catenin drive tumor progression and resistance. Targeting the TME is crucial for developing effective therapies, including strategies like inhibiting CAFs, modulating immune response, disrupting angiogenesis, and blocking neural cell interactions. A recent multi-omic approach has identified signature genes associated with anoikis resistance, which could serve as prognostic biomarkers and targets for personalized therapy.

2.
Clin Exp Med ; 24(1): 137, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937383

RESUMEN

Patients with multiple myeloma (MM) have an increased risk of sepsis due to underlying disease- and treatment-related immunosuppression. However, data on sepsis incidence, causative pathogens, and impact on outcomes in newly diagnosed MM (NDMM) are limited. We conducted a retrospective observational study of 92 NDMM patients who developed sepsis between 2022 and 2023 at a tertiary care center in Italy. Patient characteristics, sepsis criteria [Quick Sequential Organ Failure Assessment, Systemic Inflammatory Response Syndrome (SIRS)], microbiology results, and associations with progression-free survival (PFS) were analyzed. In this cohort of 92 critically-ill patients, pathogenic organisms were identified via microbiological culture in 74 cases. However, among the remaining 18 culture-negative patients, 9 exhibited a SIRS score of 2 and another 9 had a SIRS score of 4, suggestive of a clinical presentation consistent with sepsis despite negative cultures. Common comorbidities included renal failure (60%), anemia (71%), and bone disease (83%). Gram-negative (28%) and Gram-positive (23%) bacteria were frequent causative organisms, along with fungi (20%). Cox Univariate analyses for PFS showed statically significant HR in patients with albumin ≥ 3.5 vs < 3.5 (HR = 5.04, p < 0.001), Karnofsky performance status ≥ 80 vs < 80 (HR = 2.01, p = 0.002), and early-stage vs late-stage disease by International Staging System (HR = 4.76 and HR = 12.52, both p < 0.001) and Revised International Staging System (R-ISS III vs R-ISS I, HR = 7.38, p < 0.001). Sepsis is common in NDMM and associated with poor outcomes. Risk stratification incorporating sepsis severity, comorbidities, and disease stage may help guide preventive strategies and optimize MM management.


Asunto(s)
Mieloma Múltiple , Sepsis , Humanos , Mieloma Múltiple/complicaciones , Mieloma Múltiple/microbiología , Estudios Retrospectivos , Masculino , Femenino , Anciano , Persona de Mediana Edad , Sepsis/microbiología , Italia/epidemiología , Anciano de 80 o más Años , Adulto , Centros de Atención Terciaria
3.
Hematol Rep ; 16(1): 164-178, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38534887

RESUMEN

Non-Hodgkin's lymphomas (NHLs) are a heterogeneous group of lymphoproliferative disorders originating from B, T, or NK lymphocytes. They represent approximately 4-5% of new cancer cases and are classified according to the revised WHO system based on cell lineage, morphology, immunophenotype, and genetics. Diagnosis requires adequate biopsy material, though integrated approaches are used for leukemic presentations. Molecular profiling is improving classification and identifying prognostic markers. Indolent NHLs, such as follicular lymphoma and marginal zone lymphoma, typically pursue a non-aggressive clinical course with long survival. Aggressive diffuse large B-cell lymphoma (DLBCL) is the most common subtype. Recent studies have elucidated pathogenic mechanisms like MYC translocations and BCR pathway mutations. "Double hit" lymphomas with MYC and BCL2/BCL6 alterations confer a poor prognosis. Treatment approaches are evolving, with chemoimmunotherapy remaining standard for many indolent cases while intensified regimens and targeted agents show promise for refractory or high-risk aggressive disease. Continued elucidation of the genetic and microenvironmental underpinnings of lymphomagenesis is critical for developing personalized therapeutic strategies.

4.
Diagnostics (Basel) ; 14(2)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38248032

RESUMEN

INTRODUCTION: Lung ultrasound (LUS) is widely used in clinical practice for identifying interstitial lung diseases (ILDs) and assessing their progression. Although high-resolution computed tomography (HRCT) remains the gold standard for evaluating the severity of ILDs, LUS can be performed as a screening method or as a follow-up tool post-HRCT. Minimum training is needed to better identify typical lesions, and the integration of innovative artificial intelligence (AI) automatic algorithms may enhance diagnostic efficiency. AIM: This study aims to assess the effectiveness of a novel AI algorithm in automatic ILD recognition and scoring in comparison to an expert LUS sonographer. The "SensUS Lung" device, equipped with an automatic algorithm, was employed for the automatic recognition of the typical ILD patterns and to calculate an index grading of the interstitial involvement. METHODS: We selected 33 Caucasian patients in follow-up for ILDs exhibiting typical HRCT patterns (honeycombing, ground glass, fibrosis). An expert physician evaluated all patients with LUS on twelve segments (six per side). Next, blinded to the previous evaluation, an untrained operator, a non-expert in LUS, performed the exam with the SensUS device equipped with the automatic algorithm ("SensUS Lung") using the same protocol. Pulmonary functional tests (PFT) and DLCO were conducted for all patients, categorizing them as having reduced or preserved DLCO. The SensUS device indicated different grades of interstitial involvement named Lung Staging that were scored from 0 (absent) to 4 (peak), which was compared to the Lung Ultrasound Score (LUS score) by dividing it by the number of segments evaluated. Statistical analyses were done with Wilcoxon tests for paired values or Mann-Whitney for unpaired samples, and correlations were performed using Spearman analysis; p < 0.05 was considered significant. RESULTS: Lung Staging was non-inferior to LUS score in identifying the risk of ILDs (median SensUS 1 [0-2] vs. LUS 0.67 [0.25-1.54]; p = 0.84). Furthermore, the grade of interstitial pulmonary involvement detected with the SensUS device is directly related to the LUS score (r = 0.607, p = 0.002). Lung Staging values were inversely correlated with forced expiratory volume at first second (FEV1%, r = -0.40, p = 0.027), forced vital capacity (FVC%, r = -0.39, p = 0.03) and forced expiratory flow (FEF) at 25th percentile (FEF25%, r = -0.39, p = 0.02) while results directly correlated with FEF25-75% (r = 0.45, p = 0.04) and FEF75% (r = 0.43, p = 0.01). Finally, in patients with reduced DLCO, the Lung Staging was significantly higher, overlapping the LUS (reduced median 1 [1-2] vs. preserved 0 [0-1], p = 0.001), and overlapping the LUS (reduced median 18 [4-20] vs. preserved 5.5 [2-9], p = 0.035). CONCLUSIONS: Our data suggest that the considered AI automatic algorithm may assist non-expert physicians in LUS, resulting in non-inferior-to-expert LUS despite a tendency to overestimate ILD lesions. Therefore, the AI algorithm has the potential to support physicians, particularly non-expert LUS sonographers, in daily clinical practice to monitor patients with ILDs. The adopted device is user-friendly, offering a fully automatic real-time analysis. However, it needs proper training in basic skills.

5.
J Clin Med ; 12(23)2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-38068521

RESUMEN

This review explores various aspects of the HCC TME, including both cellular and non-cellular components, to elucidate their roles in tumor development and progression. Specifically, it highlights the significance of cancer-associated fibroblasts (CAFs) and their contributions to tumor progression, angiogenesis, immune suppression, and therapeutic resistance. Moreover, this review emphasizes the role of immune cells, such as tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), and regulatory T-cells (Tregs), in shaping the immunosuppressive microenvironment that promotes tumor growth and immune evasion. Furthermore, we also focused only on the non-cellular components of the HCC TME, including the extracellular matrix (ECM) and the role of hypoxia-induced angiogenesis. Alterations in the composition of ECM and stiffness have been implicated in tumor invasion and metastasis, while hypoxia-driven angiogenesis promotes tumor growth and metastatic spread. The molecular mechanisms underlying these processes, including the activation of hypoxia-inducible factors (HIFs) and vascular endothelial growth factor (VEGF) signaling, are also discussed. In addition to elucidating the complex TME of HCC, this review focuses on emerging therapeutic strategies that target the TME. It highlights the potential of second-line treatments, such as regorafenib, cabozantinib, and ramucirumab, in improving overall survival for advanced HCC patients who have progressed on or were intolerant to first-line therapy. Furthermore, this review explores the implications of the Barcelona Clinic Liver Cancer (BCLC) staging and classification system in guiding HCC management decisions. The BCLC system, which incorporates tumor stage, liver function, and performance status, provides a framework for treatment stratification and prognosis prediction in HCC patients. The insights gained from this review contribute to the development of novel therapeutic interventions and personalized treatment approaches for HCC patients, ultimately improving clinical outcomes in this challenging disease.

6.
Metabolites ; 13(10)2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37887378

RESUMEN

Granulomatosis with polyangiitis (GPA) is an ANCA-associated small-vessel vasculitis. Vessel wall inflammation induces multiple vascular damages, leading to accelerated atherosclerosis. Metabolic profile and cardiovascular risk are somewhat understood in GPA patients. Cardiovascular atherosclerotic disease (ASCVD) may represent a risk for outcomes. Our purpose is to evaluate ASCVD risk in GPA patients. Thirty-six patients received GPA diagnosis (T0) and were evaluated after 1 (T1) and 2 (T2) years follow-up. All patients were treated with high-dose glucocorticoid, one-year tapered, along with immunosuppressants. Total cholesterol significantly increased in T1 vs. T0 and T2. LDL exhibited the same trend, while triglycerides increased in both T1 and T2 vs. T0. No difference was found in HDL. A significant hsCRP decrease was detected at T1 and T2 vs. T0, but not between T2 and T1. Moreover, we found a significant reduction in ESR at T2 compared with T1 and T0 and at T1 compared to T0. Hypertensive patients presented a pronounced increase in lipids, while inflammation reduced slowly compared to normotensives. Our data suggest that the increase in cholesterol and LDL in T1 is a consequence of glucocorticoids. These data can be useful in the evaluation of both CV diseases and lipid metabolism, which are closely related to vessel inflammation.

7.
Intern Emerg Med ; 18(7): 1981-1993, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37592135

RESUMEN

COVID-19 induces endotheliitis and one of the main complications is enhanced coagulation. The incidence of pulmonary embolism (PE) in COVID-19 (CPE) has increased and clinical features for a rigorous analysis still need to be determined. Thus, we evaluated the clinical characteristics in CPE and the immune infiltration that occurred. Between January 1 and December 31, 2021, 38 patients were affected by CPE (9 ICU, 19 males/19 females, 70.18 ± 11.24 years) out of 459 COVID-19 cases. Controls were subjects who were evaluated for PE between January 1 2015, and December 31, 2019 (92 patients, 9 ICU, 48 males/45 females, 69.55 ± 16.59 years). All patients underwent complete physical examination, pulmonary computed tomography, laboratory tests, D-dimer, and blood gas analysis. There were no differences in laboratory tests or D-dimer. In patients with CPE, pO2, alveolar-arterial oxygen difference (A-aDO2), oxygen saturation %, and the ratio between arterial partial pressure of oxygen (PaO2) and fraction of inspired oxygen (FiO2), P/F, were significantly increased. There were no differences in PaCO2. Platelet count was inversely correlated to P/F (r = - 0.389, p = 0.02) but directly to A-aDO2 (r = 0.699, p = 0.001) only in patients with CPE. Histology of lung biopsies (7 CPE/7 controls) of patients with CPE showed an increase in CD15+ cells, HMGB1, and extracellular MPO as a marker of NETosis, while no significant differences were found in CD3+, CD4+, CD8+, and intracellular MPO. Overall, data suggest that CPE has a different clinical setting. Reduced oxygen content and saturation described in Patients with CPE should not be considered a trustworthy sign of disease. Increased A-aDO2 may indicate that CPE involves the smallest vessels as compared to classical PE. The significant difference in NETosis may suggest the mechanism related to thrombi formation.


Asunto(s)
COVID-19 , Embolia Pulmonar , Masculino , Femenino , Humanos , COVID-19/complicaciones , Embolia Pulmonar/epidemiología , Embolia Pulmonar/etiología , Arterias , Oxígeno , Proyectos de Investigación , Estudios Retrospectivos
8.
Biomedicines ; 11(7)2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37509726

RESUMEN

Multiple myeloma (MM) is a cancerous condition characterized by the proliferation of plasma cells within the hematopoietic marrow, resulting in multiple osteolytic lesions. MM patients typically experience bone pain, kidney damage, fatigue due to anemia, and infections. Historically, MM was an incurable disease with a life expectancy of around three years after diagnosis. However, over the past two decades, the development of novel therapeutics has significantly improved patient outcomes, including response to treatment, remission duration, quality of life, and overall survival. These advancements include thalidomide and its derivatives, lenalidomide and pomalidomide, which exhibit diverse mechanisms of action against the plasma cell clone. Additionally, proteasome inhibitors such as bortezomib, ixazomib, and carfilzomib disrupt protein degradation, proving specifically toxic to cancerous plasma cells. Recent advancements also involve monoclonal antibodies targeting surface antigens, such as elotuzumab (anti-CS1) and daratumumab (anti-CD38), bispecific t-cell engagers such as teclistamab (anti-BCMA/CD3) and Chimeric antigen receptor T (CAR-T)-based strategies, with a growing focus on drugs that exhibit increasingly targeted action against neoplastic plasma cells and relevant effects on the tumor microenvironment.

9.
Biomedicines ; 11(5)2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37239071

RESUMEN

Extracellular vesicles (EVs) have emerged as important players in cell-to-cell communication within the bone marrow (BM) of multiple myeloma (MM) patients, where they mediate several tumor-associated processes. Here, we investigate the contribution of fibroblasts-derived EVs (FBEVs) in supporting BM angiogenesis. We demonstrate that FBEVs' cargo contains several angiogenic cytokines (i.e., VEGF, HGF, and ANG-1) that promote an early over-angiogenic effect independent from EVs uptake. Interestingly, co-culture of endothelial cells from MM patients (MMECs) with FBEVs for 1 or 6 h activates the VEGF/VEGFR2, HGF/HGFR, and ANG-1/Tie2 axis, as well as the mTORC2 and Wnt/ß-catenin pathways, suggesting that the early over-angiogenic effect is a cytokine-mediated process. FBEVs internalization occurs after longer exposure of MMECs to FBEVs (24 h) and induces a late over-angiogenic effect by increasing MMECs migration, chemotaxis, metalloproteases release, and capillarogenesis. FBEVs uptake activates mTORC1, MAPK, SRC, and STAT pathways that promote the release of pro-angiogenic cytokines, further supporting the pro-angiogenic milieu. Overall, our results demonstrate that FBEVs foster MM angiogenesis through dual time-related uptake-independent and uptake-dependent mechanisms that activate different intracellular pathways and transcriptional programs, providing the rationale for designing novel anti-angiogenic strategies.

10.
Int J Mol Sci ; 24(6)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36982382

RESUMEN

The pathophysiology of atrial fibrillation (AF) may involve atrial fibrosis/remodeling and dysfunctional endothelial activities. Despite the currently available treatment approaches, the progression of AF, its recurrence rate, and the high mortality risk of related complications underlay the need for more advanced prognostic and therapeutic strategies. There is increasing attention on the molecular mechanisms controlling AF onset and progression points to the complex cell to cell interplay that triggers fibroblasts, immune cells and myofibroblasts, enhancing atrial fibrosis. In this scenario, endothelial cell dysfunction (ED) might play an unexpected but significant role. microRNAs (miRNAs) regulate gene expression at the post-transcriptional level. In the cardiovascular compartment, both free circulating and exosomal miRNAs entail the control of plaque formation, lipid metabolism, inflammation and angiogenesis, cardiomyocyte growth and contractility, and even the maintenance of cardiac rhythm. Abnormal miRNAs levels may indicate the activation state of circulating cells, and thus represent a specific read-out of cardiac tissue changes. Although several unresolved questions still limit their clinical use, the ease of accessibility in biofluids and their prognostic and diagnostic properties make them novel and attractive biomarker candidates in AF. This article summarizes the most recent features of AF associated with miRNAs and relates them to potentially underlying mechanisms.


Asunto(s)
Fibrilación Atrial , Remodelación Atrial , MicroARNs , Enfermedades Vasculares , Humanos , MicroARNs/metabolismo , Fibrilación Atrial/genética , Fibrilación Atrial/complicaciones , Atrios Cardíacos/metabolismo , Biomarcadores/metabolismo , Enfermedades Vasculares/complicaciones , Fibrosis
11.
Clin Exp Med ; 23(6): 2687-2694, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36826612

RESUMEN

We identified STAT1 gain of function (GOF) in a 32-year-old female with pallor, weakness, cough, and dyspnea admitted to our Division of Medicine. She had severe oral ulcers (OU), type 1 diabetes (T1DM), and pancytopenia. Bone marrow (BM) biopsy showed the absence of erythroid precursors. Peripheral blood parameters such as neutrophils < 500/mL, reticulocytes < 2%, and BM hypo-cellularity allowed to diagnose severe aplastic anemia. A heterozygous variant (p.520T>C, p.Cys174Arg) of STAT1 was uncovered. Thus, p.Cys174Arg mutation was investigated as potentially responsible for the patient's inborn immunity error and aplastic anemia. Although STAT1 GOF is rare, aplastic anemia is a more common condition; therefore, we explored STAT1 functional role in the pathobiology of BM failure. Interestingly, in a cohort of six patients with idiopathic aplastic anemia, enhanced phospho-STAT1 levels were observed on BM immunostaining. Next, the most remarkable features associated with STAT1 signaling dysregulation were examined: in both pure red cell aplasia and aplastic anemia, CD8+ T cell genetic variants and mutations display enhanced signaling activities related to the JAK-STAT pathway. Inborn errors of immunity may represent a paradigmatic condition to unravel crucial pathobiological mechanisms shared by common pathological conditions. Findings from our case-based approach and the phenotype correspondence to idiopathic aplastic anemia cases prompt further statistically powered prospective studies aiming to elucidate the exact role and theragnostic window for JAK/STAT targeting in this clinical context. Nonetheless, we demonstrate how a comprehensive study of patients with primary immunodeficiencies can lead to pathophysiologic insights and potential therapeutic approaches within a broader spectrum of aplastic anemia cases.


Asunto(s)
Anemia Aplásica , Pancitopenia , Femenino , Humanos , Adulto , Anemia Aplásica/genética , Proyectos Piloto , Quinasas Janus/metabolismo , Estudios Prospectivos , Transducción de Señal , Factores de Transcripción STAT , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/metabolismo
12.
Blood ; 141(21): 2615-2628, 2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-36735903

RESUMEN

Recent investigations have improved our understanding of the molecular aberrations supporting Waldenström macroglobulinemia (WM) biology; however, whether the immune microenvironment contributes to WM pathogenesis remains unanswered. First, we showed how a transgenic murine model of human-like lymphoplasmacytic lymphoma/WM exhibits an increased number of regulatory T cells (Tregs) relative to control mice. These findings were translated into the WM clinical setting, in which the transcriptomic profiling of Tregs derived from patients with WM unveiled a peculiar WM-devoted messenger RNA signature, with significant enrichment for genes related to nuclear factor κB-mediated tumor necrosis factor α signaling, MAPK, and PI3K/AKT, which was paralleled by a different Treg functional phenotype. We demonstrated significantly higher Treg induction, expansion, and proliferation triggered by WM cells, compared with their normal cellular counterpart; with a more profound effect within the context of CXCR4C1013G-mutated WM cells. By investigating the B-cell-to-T-cell cross talk at single-cell level, we identified the CD40/CD40-ligand as a potentially relevant axis that supports WM cell-Tregs interaction. Our findings demonstrate the existence of a Treg-mediated immunosuppressive phenotype in WM, which can be therapeutically reversed by blocking the CD40L/CD40 axis to inhibit WM cell growth.


Asunto(s)
Linfoma de Células B , Macroglobulinemia de Waldenström , Humanos , Animales , Ratones , Macroglobulinemia de Waldenström/patología , Ligando de CD40/genética , Fosfatidilinositol 3-Quinasas , Ligandos , Transducción de Señal , Linfoma de Células B/complicaciones , Microambiente Tumoral
13.
Methods Mol Biol ; 2572: 67-79, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36161408

RESUMEN

The Visium Spatial Gene Expression Solution (Visium 10×) allows for the mRNA analysis using high throughput sequencing and maps a transcriptional expression pattern in tissue sections using high-resolution microscope imaging in ex-vivo human and mice samples. The workflow surveys spatial global gene expression in tissue sections, exploiting the whole transcriptome profiling and defining the set of transcripts via targeted gene panels. An automated cell type annotation allows a comparison with control tissue samples. This technique delineates cancerous or diseased tissue boundaries and details gene expression gradients in the tissue surrounding the tumor or pathologic nests. Remarkably, the Visium 10× allows for whole transcriptome and targeted analysis without the loss of spatial information. This approach provides gene expression data within the context of tissue architecture, tissue microenvironments, and cell groups. It can be used in association with therapy, anti-angiogenic therapy, and immunotherapy to improve treatment response.


Asunto(s)
Perfilación de la Expresión Génica , Neoplasias , Animales , Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Ratones , Neoplasias/genética , ARN Mensajero , Transcriptoma , Microambiente Tumoral
14.
Int J Mol Sci ; 23(22)2022 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-36430483

RESUMEN

Mast cells play a critical role in inflammatory diseases and tumor growth. The versatility of mast cells is reflected in their ability to secrete a wide range of biologically active cytokines, including interleukins, chemokines, lipid mediators, proteases, and biogenic amines. The aim of this review article is to analyze the complex involvement of mast cells in the secretion of interleukins and the role of interleukins in the regulation of biological activities of mast cells.


Asunto(s)
Interleucinas , Mastocitos , Recuento de Células , Citocinas , Transporte Biológico
15.
J Clin Med ; 11(21)2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36362718

RESUMEN

Multiple myeloma (MM) is the second most common hematological malignancy, and despite the introduction of innovative therapies, remains an incurable disease. Identifying early and minimally or non-invasive biomarkers for predicting clinical outcomes and therapeutic responses is an active field of investigation. Malignant plasma cells (PCs) reside in the bone marrow (BM) microenvironment (BMME) which comprises cells (e.g., tumour, immune, stromal cells), components of the extracellular matrix (ECM) and vesicular and non-vesicular (soluble) molecules, all factors that support PCs' survival and proliferation. The interaction between PCs and BM stromal cells (BMSCs), a hallmark of MM progression, is based not only on intercellular interactions but also on autocrine and paracrine circuits mediated by soluble or vesicular components. In fact, PCs and BMSCs secrete various cytokines, including angiogenic cytokines, essential for the formation of specialized niches called "osteoblastic and vascular niches", thus supporting neovascularization and bone disease, vital processes that modulate the pathophysiological PCs-BMME interactions, and ultimately promoting disease progression. Here, we aim to discuss the roles of cytokines and growth factors in pathogenetic pathways in MM and as prognostic and predictive biomarkers. We also discuss the potential of targeted drugs that simultaneously block PCs' proliferation and survival, PCs-BMSCs interactions and BMSCs activity, which may represent the future goal of MM therapy.

16.
Front Med (Lausanne) ; 9: 863150, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35652080

RESUMEN

Background: Takayasu Arteritis (TAK) increases vascular stiffness and arterial resistance. Atherosclerosis leads to similar changes. We investigated possible differences in cardiovascular remodeling between these diseases and whether the differences are correlated with immune cell expression. Methods: Patients with active TAK arteritis were compared with age- and sex-matched atherosclerotic patients (Controls). In a subpopulation of TAK patients, Treg/Th17 cells were measured before (T0) and after 18 months (T18) of infliximab treatment. Echocardiogram, supraaortic Doppler ultrasound, and lymphocytogram were performed in all patients. Histological and immunohistochemical changes of the vessel wall were evaluated as well. Results: TAK patients have increased aortic valve dysfunction and diastolic dysfunction. The degree of dysfunction appears associated with uric acid levels. A significant increase in aortic stiffness was also observed and associated with levels of peripheral T lymphocytes. CD3+ CD4+ cell infiltrates were detected in the vessel wall samples of TAK patients, whose mean percentage of Tregs was lower than Controls at T0, but increased significantly at T18. Opposite behavior was observed for Th17 cells. Finally, TAK patients were found to have an increased risk of atherosclerotic cardiovascular disease (ASCVD). Conclusion: Our data suggest that different pathogenic mechanisms underlie vessel damage, including atherosclerosis, in TAK patients compared with Controls. The increased risk of ASCVD in TAK patients correlates directly with the degree of inflammatory cell infiltration in the vessel wall. Infliximab restores the normal frequency of Tregs/Th17 in TAK patients and allows a possible reduction of steroids and immunosuppressants.

17.
J Clin Med ; 11(9)2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35566637

RESUMEN

Multiple myeloma (MM) is a plasma cell (PC) malignancy whose development flourishes in the bone marrow microenvironment (BMME). The BMME components' immunoediting may foster MM progression by favoring initial immunotolerance and subsequent tumor cell escape from immune surveillance. In this dynamic process, immune effector cells are silenced and become progressively anergic, thus contributing to explaining the mechanisms of drug resistance in unresponsive and relapsed MM patients. Besides traditional treatments, several new strategies seek to re-establish the immunological balance in the BMME, especially in already-treated MM patients, by targeting key components of the immunoediting process. Immune checkpoints, such as CXCR4, T cell immunoreceptor with immunoglobulin and ITIM domains (TIGIT), PD-1, and CTLA-4, have been identified as common immunotolerance steps for immunotherapy. B-cell maturation antigen (BCMA), expressed on MMPCs, is a target for CAR-T cell therapy, antibody-(Ab) drug conjugates (ADCs), and bispecific mAbs. Approved anti-CD38 (daratumumab, isatuximab), anti-VLA4 (natalizumab), and anti-SLAMF7 (elotuzumab) mAbs interfere with immunoediting pathways. New experimental drugs currently being evaluated (CD137 blockers, MSC-derived microvesicle blockers, CSF-1/CSF-1R system blockers, and Th17/IL-17/IL-17R blockers) or already approved (denosumab and bisphosphonates) may help slow down immune escape and disease progression. Thus, the identification of deregulated mechanisms may identify novel immunotherapeutic approaches to improve MM patients' outcomes.

18.
Cancers (Basel) ; 14(8)2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35454868

RESUMEN

Long non-coding RNAs (lncRNAs) are transcripts longer than 200 nucleotides that are not translated into proteins. Nowadays, lncRNAs are gaining importance as key regulators of gene expression and, consequently, of several biological functions in physiological and pathological conditions, including cancer. Here, we point out the role of lncRNAs in the pathogenesis of multiple myeloma (MM). We focus on their ability to regulate the biological processes identified as "hallmarks of cancer" that enable malignant cell transformation, early tumor onset and progression. The aberrant expression of lncRNAs in MM suggests their potential use as clinical biomarkers for diagnosis, patient stratification, and clinical management. Moreover, they represent ideal candidates for therapeutic targeting.

19.
J Pathol ; 256(4): 402-413, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34919276

RESUMEN

Multiple myeloma (MM) progression and drug resistance depend on the crosstalk between MM cells and bone marrow (BM) fibroblasts (FBs). During monoclonal gammopathy of undetermined significance (MGUS) to MM transition, MM cell-derived exosomes (EXOs) reprogram the miRNA (miR) profile of FBs, inducing the overexpression miR-23b-3p, miR-27b-3p, miR-125b-5p, miR-214-3p, and miR-5100. Here, we demonstrate that the miR content of MM FB-derived EXOs (FB-EXOs) overlaps the miR profile of parental FBs by overexpressing comparable levels of miR-23b-3p, miR-27b-3p, miR-125b-5p, miR-214-3p, and miR-5100. Recipient MM cells co-cultured with MM FB-EXOs selectively overexpress only miR-214-3p and miR-5100 but not miR-23b-3p, miR-27b-3p, and miR-125b-5p, suggesting a putative selective transfer. MM cells express HOTAIR, TOB1-AS1, and MALAT1 lncRNAs. Transient transfection of MM cells with lnc·siRNAs demonstrates that HOTAIR, TOB1-AS1, and MALAT1 lncRNAs are sponges for miR-23b-3p, miR-27b-3p, and miR-125b-5p. Indeed, lncRNA knockdown significantly increased miR levels in U266 MM cells co-cultured with MM FB-EXOs. Selective miR-214-3p and miR-5100 overexpression modulates MAPK, PI3K/AKT/mTOR, and p53 pathways in MM cells. Interrogation using the DIANA tools algorithm and transient overexpression using miR mimic probes confirmed the involvement of miR-214-3p and miR-5100 and their target genes, PTEN and DUSP16, respectively, in the modulation of these intracellular pathways. Finally, the uptake of EXOs as well as miR-214-3p and miR-5100 overexpression increase MM cell proliferation and resistance to bortezomib-induced apoptosis by switching the balance between pro-/anti-apoptotic proteins. Overall, these data show that MM cells are not simply a container into which EXOs empty their cargo. On the contrary, tumour cells finely neutralize exosomal miRs via lncRNA expression to ensure their survival. © 2021 The Pathological Society of Great Britain and Ireland.


Asunto(s)
Exosomas , MicroARNs , Mieloma Múltiple , ARN Largo no Codificante , Exosomas/patología , Fibroblastos/patología , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Mieloma Múltiple/patología , Fosfatidilinositol 3-Quinasas/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
20.
Cells ; 10(11)2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34831408

RESUMEN

Multiple myeloma (MM) progression closely depends on the bidirectional crosstalk between tumor cells and the surrounding microenvironment, which leads to the creation of a tumor supportive niche. Extracellular vesicles (EVs) have emerged as key players in the pathological interplay between the malignant clone and near/distal bone marrow (BM) cells through their biologically active cargo. Here, we describe the role of EVs derived from MM and BM cells in reprogramming the tumor microenvironment and in fostering bone disease, angiogenesis, immunosuppression, drug resistance, and, ultimately, tumor progression. We also examine the emerging role of EVs as new therapeutic agents for the treatment of MM, and their potential use as clinical biomarkers for early diagnosis, disease classification, and therapy monitoring.


Asunto(s)
Comunicación Celular , Progresión de la Enfermedad , Vesículas Extracelulares/metabolismo , Mieloma Múltiple/patología , Humanos , Terapia de Inmunosupresión , Mieloma Múltiple/diagnóstico , Neovascularización Patológica/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA