Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Waste Manag ; 176: 169-191, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38301601

RESUMEN

A range of issues related to sustainability in the agrifood industry have spurred interest in mass production of insects as human food and animal feed alternatives. This rapidly evolving sector addresses several challenges, including the management of food waste or agrifood by-products and the production of alternative animal proteins demonstrating low environmental impacts that improve sector circularity. The mass production of insects on agrifood processing wastes or by-products represents an opportunity to address these challenges. While the production of insects offers prospects for sustainable protein production, a major side stream is the production of frass or larval excrement including uneaten feed and chitin-rich exuviae (derived from multiple larval moults). The production of each tonne of edible insects generates 2 to 4 tonnes of frass with an interesting potential in agriculture versus traditional organic amendments (compost, manure, biochar). This review aims to demonstrate the characteristics of frass, its common harvest and conditioning methods, its optimal application rates for planting crops, the mechanisms by which it can protect plants against biotic and abiotic stresses and demystify the risks and potential associated with its application in agriculture. The characteristics of frass are compared with those of conventional fertilizers or other. This report also compiles the Canadian, US and European regulatory frameworks as a novel plant fertilizer and aims to pave the way for future research necessary for its valorization in plant production.


Asunto(s)
Estiércol , Eliminación de Residuos , Animales , Humanos , Canadá , Insectos , Productos Agrícolas , Fertilizantes/análisis , Suelo
2.
Waste Manag ; 175: 305-314, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38237406

RESUMEN

The conventional management of hatchery residues is associated with greenhouse gas and unpleasant odor emissions, the presence of pathogens and high disposal costs for producers. To address these issues, on-farm alternatives like composting, fermentation, and insect valorization are promising approaches. This study aims to characterize hatchery residues and define critical quality thresholds to identify effective processes for their management. Hatchery residue samples were collected bi-monthly over a year (N = 24) and were analyzed for proximate composition (dry matter, ash, energy, crude protein, crude lipid, crude fiber, carbohydrates), pH, color (L*a*b*, Chroma) and microbiological loads (total aerobic mesophilic counts, coliforms, lactic acid bacteria). Volatile fatty acid composition was also measured (N = 8). Significant correlation coefficients were found between TAM and LAB loads and residue characterization (pH, chroma, crude fibers, carbohydrates, and temperature). On a dry matter basis, residues were high in energy (2498 to 5911 cal/g), proteins (21.3 to 49.4 %) and lipids (14.6 to 29.1 %), but low in carbohydrates (0 to 15.3 %) despite temporal fluctuations. Ash content varied widely (8.6 to 49.1 %, dry matter) and is influenced by eggshell content. Microbiological loads were high for total aerobic mesophilic bacteria (6.5 to 9.1 log cfu/g), coliforms (5.4 to 8.5 log cfu/g) and lactic acid bacteria (6.7 to 9.0 log cfu/g). Valorization of hatchery residues on the farm will depends on the optimization of effective upstream stabilization processes. The critical points are discussed according to the valorization potentials that could be implemented on the farm from composting to upcycling by insects.


Asunto(s)
Carbohidratos , Granjas , Fermentación
4.
Front Microbiol ; 14: 1221728, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37664118

RESUMEN

The larvae of the Black Soldier Fly (Hermetia illucens) provide numerous ecological benefits, leading to significant commercial advancements. These benefits include the bioconversion of low-value waste into high-value feed and soil amendments. Understanding how the bacterial and eukaryotic microbiota communities affect host performance becomes vital for the optimization and specialization of industrial-scale rearing. This study investigates H. illucens-associated microbiota taxonomic composition and dynamics across the developmental cycle (eggs, neonates, larvae, prepupae, and imago X0 to second generation X1) when reared on two substrates: (i) plant-based (Housefly Gainesville diet) and (ii) animal-based (poultry hatchery waste). By using the 16S gene amplicon metataxonomic approach, we found that the results revealed that bacterial microbiota inherited from parents reared on a different substrate may have induced dysbiosis in the progeny. Specifically, the interaction networks of individuals reared on hatchery waste showed a high prevalence of negative interactions and low connectivity. Proteobacteria (39-92%), Firmicutes (4-39%), Bacteroidota (1-38%), and Actinobacteria (1-33%). In animal feed-reared individuals, Firmicutes reached the highest relative abundance (10-80%), followed by Proteobacteria (6-55%), Actinobacteria (1-31%), and Bacteroidota (0-22%). The rearing substrate was the main driver of microbiota composition, while the developmental stage influenced only the whole individual's bacterial microbiota composition. Gut regions were associated with distinct bacterial composition and richness, with diversity decreasing along the digestive tract. For the first time, microeukaryotes of the microbiota other than Fungi were investigated using 18S genetic marker amplicon sequencing with novel blocking primers specific to the Black Soldier Fly. Microeukaryotes are a neglected part of multitrophic microbiota communities that can have similar effects on their hosts as bacterial microbiota. Microeukaryotes from seven orders were identified in black soldier flies, including potential pathogens (e.g., Aplicomplexa group). Nucletmycea were the dominant class throughout development, followed by Holozoa and Stramenophiles. The eukaryote microbiota was structured by developmental stages but not by gut regions. Insights from this study are a stepping stone toward the microbiological optimization of black soldier flies for industrial rearing, highlighting how a synthetic microbiota assembly should be tailored to the rearing environment of the larvae at a targeted developmental stage.

6.
Sci Rep ; 13(1): 2396, 2023 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-36765081

RESUMEN

Black soldier fly larvae (BSF, Hermetia illucens) have gained much attention for their industrial use as biowaste recyclers and as a new source of animal proteins. The functional effect that microbiota has on insect health and growth performance remains largely unknown. This study clarifies the role of microbiota in BSF ontogeny by investigating the differential genomic expression of BSF larvae in axenic conditions (i.e., germfree) relative to non-axenic (conventional) conditions. We used RNA-seq to measure differentially expressed transcripts between axenic and conventional condition using DESeq2 at day 4, 12 and 20 post-hatching. Gene expression was significantly up or down-regulated for 2476 transcripts mapped in gene ontology functions, and axenic larvae exhibited higher rate of down-regulated functions. Up-regulated microbiota-dependant transcriptional gene modules included the immune system, the lipid metabolism, and the nervous system. Expression profile showed a shift in late larvae (day 12 and 20), exposing a significant temporal effect on gene expression. These results provide the first evidence of host functional genes regulated by microbiota in the BSF larva, further demonstrating the importance of host-microbiota interactions on host ontology and health. These results open the door to optimization of zootechnical properties in alternative animal protein production, biowaste revalorization and recycling.


Asunto(s)
Dípteros , Microbiota , Animales , Larva , Alimentación Animal/análisis , Dípteros/fisiología , Microbiota/genética , Metabolismo de los Lípidos
7.
Animals (Basel) ; 9(4)2019 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-31010069

RESUMEN

Black soldier fly (BSF) larvae represent a promising alternative ingredient for animal feed. Post-production processing can, however, affect their quality. This project aimed to optimize larval killing by comparing the effects on the nutritional and microbiological quality of 10 methods, i.e., blanching (B = 40 s), desiccation (D = 60 °C, 30 min), freezing (F20 = -20 °C, 1 h; F40 = -40 °C, 1 h; N = liquid nitrogen, 40 s), high hydrostatic pressure (HHP = 3 min, 600 MPa), grinding (G = 2 min) and asphyxiation (CO2 = 120 h; N2 = 144 h; vacuum conditioning, V = 120 h). Some methods affected the pH (B, asphyxiation), total moisture (B, asphyxiation and D) and ash contents (B, p < 0.001). The lipid content (asphyxiation) and their oxidation levels (B, asphyxiation and D) were also affected (p < 0.001). Killing methods altered the larvae colour during freeze-drying and in the final product. Blanching appears to be the most appropriate strategy since it minimizes lipid oxidation (primary = 4.6 ± 0.7 mg cumen hydroperoxide (CHP) equivalents/kg; secondary = 1.0 ± 0.1 mg malondialdehyde/kg), reduces microbial contamination and initiates dehydration (water content = 78.1 ± 1.0%). We propose herein, an optimized protocol to kill BSF that meet the Canadian regulatory requirements of the insect production and processing industry.

8.
Ecotoxicol Environ Saf ; 74(7): 1888-95, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21831432

RESUMEN

In order to identify biomarkers of oil pollution in fish we tested the effects of an experimental Light Cycle Oil (LCO) exposure on vertebral bone of sea bass, Dicentrarchus labrax L. A total of 60 adult fish were acclimated for fifteen days, then twenty were collected as controls (Day 0) while 40 were exposed to a soluble fraction of LCO (1136 ng L(-1) of ten Polycyclic Aromatic Hydrocarbons, PAHs) for seven days. Twenty of them were sampled at the end of the exposure period and the twenty last after a recovery period of fourteen days in clean seawater. Vertebral abnormalities were counted and bone mineralization, total bone area and bone density profiles were established for several post-cranial and caudal vertebrae. In sea bass, seven days of LCO exposure did not affect the frequency and severity of the vertebral abnormalities. No significant differences were observed in bone density and bone repartition (parameters of bone area profiles) between unexposed (Day 0), exposed (D7) and decontaminated (D21) fish. In contrast, bone mineralization of the vertebrae decreased in contaminated sea bass, but in a reversible way, which confirms a previous study in trout showing that this parameter is an early stress indicator. Our results suggest that vertebral bone mineralization could be used as a biomarker of PAH pollution in sea bass. It would be interesting to check this new biomarker in other teleost species exposed to various xenobiotics.


Asunto(s)
Lubina/anomalías , Contaminación por Petróleo/efectos adversos , Hidrocarburos Policíclicos Aromáticos/efectos adversos , Columna Vertebral/efectos de los fármacos , Animales , Biomarcadores/análisis , Densidad Ósea/efectos de los fármacos , Calcificación Fisiológica/efectos de los fármacos , Agua de Mar , Columna Vertebral/anomalías , Pruebas de Toxicidad Aguda
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...