Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbiol Spectr ; 11(4): e0034023, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37338375

RESUMEN

Enterococcus faecium is a difficult-to-treat pathogen with emerging resistance to most clinically available antibiotics. Daptomycin (DAP) is the standard of care, but even high DAP doses (12 mg/kg body weight/day) failed to eradicate some vancomycin-resistant strains. Combination DAP-ceftaroline (CPT) may increase ß-lactam affinity for target penicillin binding proteins (PBP); however, in a simulated endocardial vegetation (SEV) pharmacokinetic/pharmacodynamic (PK/PD) model, DAP-CPT did not achieve therapeutic efficacy against a DAP-nonsusceptible (DNS) vancomycin-resistant E. faecium (VRE) isolate. Phage-antibiotic combinations (PAC) have been proposed for resistant high-inoculum infections. We aimed to identify PAC with maximum bactericidal activity and prevention/reversal of phage and antibiotic resistance in an SEV PK/PD model against DNS isolate R497. Phage-antibiotic synergy (PAS) was evaluated with modified checkerboard MIC and 24-h time-kill analyses (TKA). Human-simulated antibiotic doses of DAP and CPT with phages NV-497 and NV-503-01 were then evaluated in 96-h SEV PK/PD models against R497. Synergistic and bactericidal activity was identified with the PAC of DAP-CPT combined with phage cocktail NV-497-NV-503-01, demonstrating a significant reduction in viability down to 3-log10 CFU/g (-Δ, 5.77-log10 CFU/g; P < 0.001). This combination also demonstrated isolate resensitization to DAP. Evaluation of phage resistance post-SEV demonstrated prevention of phage resistance for PACs containing DAP-CPT. Our results provide novel data highlighting bactericidal and synergistic activity of PAC against a DNS E. faecium isolate in a high-inoculum ex vivo SEV PK/PD model with subsequent DAP resensitization and prevention of phage resistance. IMPORTANCE Our study supports the additional benefit of standard-of-care antibiotics combined with a phage cocktail compared to antibiotic alone against a daptomycin-nonsusceptible (DNS) E. faecium isolate in a high-inoculum simulated endocardial vegetation ex vivo PK/PD model. E. faecium is a leading cause of hospital-acquired infections and is associated with significant morbidity and mortality. Daptomycin is considered the first-line therapy for vancomycin-resistant E. faecium (VRE), but the highest published doses have failed to eradicate some VRE isolates. The addition of a ß-lactam to daptomycin may result in synergistic activity, but previous in vitro data demonstrate that daptomycin plus ceftaroline failed to eradicate a VRE isolate. Phage therapy as an adjunct to antibiotic therapy has been proposed as a salvage therapy for high-inoculum infections; however, pragmatic clinical comparison trials for endocarditis are lacking and difficult to design, reinforcing the timeliness of such analysis.


Asunto(s)
Daptomicina , Enterococcus faecium , Humanos , Antibacterianos/farmacología , Daptomicina/farmacología , Vancomicina/farmacología , beta-Lactamas/farmacología , Pruebas de Sensibilidad Microbiana , Ceftarolina
2.
Antibiotics (Basel) ; 11(9)2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36139953

RESUMEN

Multidrug-resistant (MDR) Enterococcus faecium is a challenging nosocomial pathogen known to colonize medical device surfaces and form biofilms. Bacterio (phages) may constitute an emerging anti-infective option for refractory, biofilm-mediated infections. This study evaluates eight MDR E. faecium strains for biofilm production and phage susceptibility against nine phages. Two E. faecium strains isolated from patients with bacteremia and identified to be biofilm producers, R497 (daptomycin (DAP)-resistant) and HOU503 (DAP-susceptible dose-dependent (SDD), in addition to four phages with the broadest host ranges (ATCC 113, NV-497, NV-503-01, NV-503-02) were selected for further experiments. Preliminary phage-antibiotic screening was performed with modified checkerboard minimum biofilm inhibitory concentration (MBIC) assays to efficiently screen for bacterial killing and phage-antibiotic synergy (PAS). Data were compared by one-way ANOVA and Tukey (HSD) tests. Time kill analyses (TKA) were performed against R497 and HOU503 with DAP at 0.5× MBIC, ampicillin (AMP) at free peak = 72 µg/mL, and phage at a multiplicity of infection (MOI) of 0.01. In 24 h TKA against R497, phage-antibiotic combinations (PAC) with DAP, AMP, or DAP + AMP combined with 3- or 4-phage cocktails demonstrated significant killing compared to the most effective double combination (ANOVA range of mean differences 2.998 to 3.102 log10 colony forming units (CFU)/mL; p = 0.011, 2.548 to 2.868 log10 colony forming units (CFU)/mL; p = 0.023, and 2.006 to 2.329 log10 colony forming units (CFU)/mL; p = 0.039, respectively), with preserved phage susceptibility identified in regimens with 3-phage cocktails containing NV-497 and the 4-phage cocktail. Against HOU503, AMP combined with any 3- or 4-phage cocktail and DAP + AMP combined with the 3-phage cocktail ATCC 113 + NV-497 + NV-503-01 demonstrated significant PAS and bactericidal activity (ANOVA range of mean differences 2.251 to 2.466 log10 colony forming units (CFU)/mL; p = 0.044 and 2.119 to 2.350 log10 colony forming units (CFU)/mL; p = 0.028, respectively), however, only PAC with DAP + AMP maintained phage susceptibility at the end of 24 h TKA. R497 and HOU503 exposure to DAP, AMP, or DAP + AMP in the presence of single phage or phage cocktail resulted in antibiotic resistance stabilization (i.e., no antibiotic MBIC elevation compared to baseline) without identified antibiotic MBIC reversion (i.e., lowering of antibiotic MBIC compared to baseline in DAP-resistant and DAP-SDD isolates) at the end of 24 h TKA. In conclusion, against DAP-resistant R497 and DAP-SDD HOU503 E. faecium clinical blood isolates, the use of DAP + AMP combined with 3- and 4-phage cocktails effectively eradicated biofilm-embedded MDR E. faecium without altering antibiotic MBIC or phage susceptibility compared to baseline.

3.
Viruses ; 13(6)2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-34205687

RESUMEN

Successful joint replacement is a life-enhancing procedure with significant growth in the past decade. Prosthetic joint infection occurs rarely; it is a biofilm-based infection that is poorly responsive to antibiotic alone. Recent interest in bacteriophage therapy has made it possible to treat some biofilm-based infections, as well as those caused by multidrug-resistant pathogens, successfully when conventional antibiotic therapy has failed. Here, we describe the case of a 61-year-old woman who was successfully treated after a second cycle of bacteriophage therapy administered at the time of a two-stage exchange procedure for a persistent methicillin-sensitive Staphylococcus aureus (MSSA) prosthetic knee-joint infection. We highlight the safety and efficacy of both intravenous and intra-articular infusions of bacteriophage therapy, a successful outcome with a single lytic phage, and the development of serum neutralization with prolonged treatment.


Asunto(s)
Artritis Infecciosa/terapia , Bacteriófagos/fisiología , Terapia de Fagos/métodos , Infecciones Relacionadas con Prótesis/terapia , Infecciones Estafilocócicas/terapia , Bacteriófagos/clasificación , Biopelículas/crecimiento & desarrollo , Femenino , Humanos , Staphylococcus aureus Resistente a Meticilina/patogenicidad , Staphylococcus aureus Resistente a Meticilina/virología , Persona de Mediana Edad , Infecciones Relacionadas con Prótesis/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...