Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
JCI Insight ; 9(4)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38385744

RESUMEN

Crohn's disease (CD) is a chronic inflammatory gut disorder. Molecular mechanisms underlying the clinical heterogeneity of CD remain poorly understood. MicroRNAs (miRNAs) are important regulators of gut physiology, and several have been implicated in the pathogenesis of adult CD. However, there is a dearth of large-scale miRNA studies for pediatric CD. We hypothesized that specific miRNAs uniquely mark pediatric CD. We performed small RNA-Seq of patient-matched colon and ileum biopsies from treatment-naive pediatric patients with CD (n = 169) and a control cohort (n = 108). Comprehensive miRNA analysis revealed 58 miRNAs altered in pediatric CD. Notably, multinomial logistic regression analysis revealed that index levels of ileal miR-29 are strongly predictive of severe inflammation and stricturing. Transcriptomic analyses of transgenic mice overexpressing miR-29 show a significant reduction of the tight junction protein gene Pmp22 and classic Paneth cell markers. The dramatic loss of Paneth cells was confirmed by histologic assays. Moreover, we found that pediatric patients with CD with elevated miR-29 exhibit significantly lower Paneth cell counts, increased inflammation scores, and reduced levels of PMP22. These findings strongly indicate that miR-29 upregulation is a distinguishing feature of pediatric CD, highly predictive of severe phenotypes, and associated with inflammation and Paneth cell loss.


Asunto(s)
Enfermedad de Crohn , MicroARNs , Adulto , Animales , Ratones , Humanos , Niño , Enfermedad de Crohn/patología , MicroARNs/genética , MicroARNs/metabolismo , Fenotipo , Inflamación
2.
Res Sq ; 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38045363

RESUMEN

Current amyloid beta-targeting approaches for Alzheimer's disease (AD) therapeutics only slow cognitive decline for small numbers of patients. This limited efficacy exists because AD is a multifactorial disease whose pathological mechanism(s) and diagnostic biomarkers are largely unknown. Here we report a new mechanism of AD pathogenesis in which the histone methyltransferase G9a noncanonically regulates translation of a hippocampal proteome that defines the proteopathic nature of AD. Accordingly, we developed a novel brain-penetrant inhibitor of G9a, MS1262, across the blood-brain barrier to block this G9a-regulated, proteopathologic mechanism. Intermittent MS1262 treatment of multiple AD mouse models consistently restored both cognitive and noncognitive functions to healthy levels. Comparison of proteomic/phosphoproteomic analyses of MS1262-treated AD mice with human AD patient data identified multiple pathological brain pathways that elaborate amyloid beta and neurofibrillary tangles as well as blood coagulation, from which biomarkers of early stage of AD including SMOC1 were found to be affected by MS1262 treatment. Notably, these results indicated that MS1262 treatment may reduce or avoid the risk of blood clot burst for brain bleeding or a stroke. This mouse-to-human conservation of G9a-translated AD proteopathology suggests that the global, multifaceted effects of MS1262 in mice could extend to relieve all symptoms of AD patients with minimum side effect. In addition, our mechanistically derived biomarkers can be used for stage-specific AD diagnosis and companion diagnosis of individualized drug effects.

3.
medRxiv ; 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37961307

RESUMEN

Current amyloid beta-targeting approaches for Alzheimer's disease (AD) therapeutics only slow cognitive decline for small numbers of patients. This limited efficacy exists because AD is a multifactorial disease whose pathological mechanism(s) and diagnostic biomarkers are largely unknown. Here we report a new mechanism of AD pathogenesis in which the histone methyltransferase G9a noncanonically regulates translation of a hippocampal proteome that defines the proteopathic nature of AD. Accordingly, we developed a novel brain-penetrant inhibitor of G9a, MS1262, across the blood-brain barrier to block this G9a-regulated, proteopathologic mechanism. Intermittent MS1262 treatment of multiple AD mouse models consistently restored both cognitive and noncognitive functions to healthy levels. Comparison of proteomic/phosphoproteomic analyses of MS1262-treated AD mice with human AD patient data identified multiple pathological brain pathways that elaborate amyloid beta and neurofibrillary tangles as well as blood coagulation, from which biomarkers of early stage of AD including SMOC1 were found to be affected by MS1262 treatment. Notably, these results indicated that MS1262 treatment may reduce or avoid the risk of blood clot burst for brain bleeding or a stroke. This mouse-to-human conservation of G9a-translated AD proteopathology suggests that the global, multifaceted effects of MS1262 in mice could extend to relieve all symptoms of AD patients with minimum side effect. In addition, our mechanistically derived biomarkers can be used for stage-specific AD diagnosis and companion diagnosis of individualized drug effects. One-Sentence Summary: A brain-penetrant inhibitor of G9a methylase blocks G9a translational mechanism to reverse Alzheimer's disease related proteome for effective therapy.

4.
Stem Cells ; 40(1): 49-58, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35511861

RESUMEN

Human embryonic stem (hES) cells are highly sensitive to apoptotic stimuli such as DNA damage, which allows for the rapid elimination of mutated cells during development. However, the mechanisms that maintain hES cells in the primed apoptotic state are not completely known. Key activators of apoptosis, the BH3-only proteins, are present at low levels in most cell types. In contrast, hES cells have constitutive high levels of the BH3-only protein, NOXA. We examined the importance of NOXA for enabling apoptosis in hES cells. hES cells deleted for NOXA showed remarkable protection against multiple apoptotic stimuli. NOXA was constitutively localized to the mitochondria, where it interacted with MCL1. Strikingly, inhibition of MCL1 in NOXA knockout cells was sufficient to sensitize these cells to DNA damage-induced cell death. Our study demonstrates that an essential function of constitutive high levels of NOXA in hES cells is to effectively antagonize MCL1 to permit rapid apoptosis.


Asunto(s)
Células Madre Embrionarias Humanas , Proteínas Proto-Oncogénicas c-bcl-2 , Apoptosis , Proteínas Reguladoras de la Apoptosis/metabolismo , Células Madre Embrionarias Humanas/metabolismo , Humanos , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
5.
Cell Rep ; 35(1): 108946, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33826889

RESUMEN

Although embryonic brain development and neurodegeneration have received considerable attention, the events that govern postnatal brain maturation are less understood. Here, we identify the miR-29 family to be strikingly induced during the late stages of brain maturation. Brain maturation is associated with a transient, postnatal period of de novo non-CG (CH) DNA methylation mediated by DNMT3A. We examine whether an important function of miR-29 during brain maturation is to restrict the period of CH methylation via its targeting of Dnmt3a. Deletion of miR-29 in the brain, or knockin mutations preventing miR-29 to specifically target Dnmt3a, result in increased DNMT3A expression, higher CH methylation, and repression of genes associated with neuronal activity and neuropsychiatric disorders. These mouse models also develop neurological deficits and premature lethality. Our results identify an essential role for miR-29 in restricting CH methylation in the brain and illustrate the importance of CH methylation regulation for normal brain maturation.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Metilación de ADN/genética , MicroARNs/metabolismo , Regiones no Traducidas 3'/genética , Animales , Animales Recién Nacidos , Secuencia de Bases , Conducta Animal , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Regulación hacia Abajo/genética , Regulación del Desarrollo de la Expresión Génica , Ratones Endogámicos C57BL , MicroARNs/genética , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Neuronas/metabolismo , Neuronas/patología , Convulsiones/genética , Convulsiones/patología , Transducción de Señal , Sinapsis/metabolismo , Regulación hacia Arriba/genética
6.
Cell Death Dis ; 12(1): 104, 2021 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-33473103

RESUMEN

While the consequences of nuclear DNA damage have been well studied, the exact consequences of acute and selective mitochondrial DNA (mtDNA) damage are less understood. DNA damaging chemotherapeutic drugs are known to activate p53-dependent apoptosis in response to sustained nuclear DNA damage. While it is recognized that whole-cell exposure to these drugs also damages mtDNA, the specific contribution of mtDNA damage to cellular degeneration is less clear. To examine this, we induced selective mtDNA damage in neuronal axons using microfluidic chambers that allow for the spatial and fluidic isolation of neuronal cell bodies (containing nucleus and mitochondria) from the axons (containing mitochondria). Exposure of the DNA damaging drug cisplatin selectively to only the axons induced mtDNA damage in axonal mitochondria, without nuclear damage. We found that this resulted in the selective degeneration of only the targeted axons that were exposed to DNA damage, where ROS was induced but mitochondria were not permeabilized. mtDNA damage-induced axon degeneration was not mediated by any of the three known axon degeneration pathways: apoptosis, axon pruning, and Wallerian degeneration, as Bax-deficiency, or Casp3-deficiency, or Sarm1-deficiency failed to protect the degenerating axons. Strikingly, p53, which is essential for degeneration after nuclear DNA damage, was also not required for degeneration induced with mtDNA damage. This was most evident when the p53-deficient neurons were globally exposed to cisplatin. While the cell bodies of p53-deficient neurons were protected from degeneration in this context, the axons farthest from the cell bodies still underwent degeneration. These results highlight how whole cell exposure to DNA damage activates two pathways of degeneration; a faster, p53-dependent apoptotic degeneration that is triggered in the cell bodies with nuclear DNA damage, and a slower, p53-independent degeneration that is induced with mtDNA damage.


Asunto(s)
Daño del ADN , ADN Mitocondrial/metabolismo , Neuronas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Degeneración Walleriana/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , ADN Mitocondrial/genética , Humanos , Degeneración Walleriana/genética
7.
Sci Rep ; 10(1): 16886, 2020 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-33037272

RESUMEN

Mitochondrial quality control is essential for the long-term survival of postmitotic neurons. The E3 ubiquitin ligase Parkin promotes the degradation of damaged mitochondria via mitophagy and mutations in Parkin are a major cause of early-onset Parkinson's disease (PD). Surprisingly however, mice deleted for Parkin alone are rather asymptomatic for PD-related pathology, suggesting that other complementary or redundant mitochondrial quality control pathways may exist in neurons. Mitochondrial damage is often accompanied by the release of toxic proteins such as cytochrome c. We have reported that once in the cytosol, cytochrome c is targeted for degradation by the E3 ligase CUL9 in neurons. Here we examined whether CUL9 and Parkin cooperate to promote optimal neuronal survival in vivo. We generated mice deficient for both Cul9 and Parkin and examined them for PD-related phenotypes. Specifically, we conducted assays to examine behavioural deficits (locomotor, sensory, memory and learning) and loss of dopaminergic neurons in both males and females. Our results show that the loss of Cul9 and Parkin together did not enhance the effect of Parkin deficiency alone. These results indicate that while both Parkin and CUL9 participate in mitochondrial quality control, neurons likely have multiple redundant mechanisms to ensure their long-term survival.


Asunto(s)
Enfermedad de Parkinson/genética , Transferasas/genética , Ubiquitina-Proteína Ligasas/genética , Animales , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/fisiología , Femenino , Masculino , Ratones , Ratones Noqueados , Mitocondrias , Mitofagia , Mutación , Transferasas/fisiología , Ubiquitina-Proteína Ligasas/fisiología
8.
FEBS J ; 286(17): 3276-3298, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31230407

RESUMEN

Apoptosis plays a major role in shaping the developing nervous system during embryogenesis as neuronal precursors differentiate to become post-mitotic neurons. However, once neurons are incorporated into functional circuits and become mature, they greatly restrict their capacity to die via apoptosis, thus allowing the mature nervous system to persist in a healthy and functional state throughout life. This robust restriction of the apoptotic pathway during neuronal differentiation and maturation is defined by multiple unique mechanisms that function to more precisely control and restrict the intrinsic apoptotic pathway. However, while these mechanisms are necessary for neuronal survival, mature neurons are still capable of activating the apoptotic pathway in certain pathological contexts. In this review, we highlight key mechanisms governing the survival of post-mitotic neurons, while also detailing the physiological and pathological contexts in which neurons are capable of overcoming this high apoptotic threshold.


Asunto(s)
Apoptosis , Neuronas/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Humanos , MAP Quinasa Quinasa 4/metabolismo , Sistema de Señalización de MAP Quinasas , Neuronas/fisiología
9.
Neurosci Res ; 139: 3-8, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30452947

RESUMEN

Neurons are capable of degenerating their axons for the physiological clearance and refinement of unnecessary connections via the programmed degenerative pathways of apoptosis and axon pruning. While both pathways mediate axon degeneration they are however distinct. Whereas in apoptosis the entire neuron, both axons and cell body, degenerates, in the context of axon pruning only the targeted axon segments are selectively degenerated. Interestingly, the molecular pathways mediating axon degeneration in these two contexts have significant mechanistic overlap but also retain distinct differences. In this review, we describe the peripheral neuronal cell culture models used to study the molecular pathways of apoptosis and pruning. We outline what is known about the molecular mechanisms of apoptosis and axon pruning and focus on highlighting the similarities and differences of these two pathways.


Asunto(s)
Apoptosis/fisiología , Axones/metabolismo , Degeneración Nerviosa/patología , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Animales , Axones/patología , Humanos , Degeneración Nerviosa/metabolismo , Malformaciones del Sistema Nervioso/patología , Neuronas/patología
10.
Proc Natl Acad Sci U S A ; 115(18): 4661-4665, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29666246

RESUMEN

Aberrant accumulation of misfolded Cu, Zn superoxide dismutase (SOD1) is a hallmark of SOD1-associated amyotrophic lateral sclerosis (ALS), an invariably fatal neurodegenerative disease. While recent discovery of nonnative trimeric SOD1-associated neurotoxicity has suggested a potential pathway for motor neuron impairment, it is yet unknown whether large, insoluble aggregates are cytotoxic. Here we designed SOD1 mutations that specifically stabilize either the fibrillar form or the trimeric state of SOD1. The designed mutants display elevated populations of fibrils or trimers correspondingly, as demonstrated by gel filtration chromatography and electron microscopy. The trimer-stabilizing mutant, G147P, promoted cell death, even more potently in comparison with the aggressive ALS-associated mutants A4V and G93A. In contrast, the fibril-stabilizing mutants, N53I and D101I, positively impacted the survival of motor neuron-like cells. Hence, we conclude the SOD1 oligomer and not the mature form of aggregated fibril is critical for the neurotoxic effects in the model of ALS. The formation of large aggregates is in competition with trimer formation, suggesting that aggregation may be a protective mechanism against formation of toxic oligomeric intermediates.


Asunto(s)
Esclerosis Amiotrófica Lateral/enzimología , Modelos Biológicos , Agregación Patológica de Proteínas/enzimología , Superóxido Dismutasa-1/metabolismo , Superóxido Dismutasa/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Línea Celular Tumoral , Supervivencia Celular , Humanos , Agregación Patológica de Proteínas/genética , Superóxido Dismutasa/genética , Superóxido Dismutasa-1/genética
11.
Cell Death Differ ; 25(3): 486-541, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29362479

RESUMEN

Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field.


Asunto(s)
Muerte Celular , Animales , Humanos , Lisosomas/metabolismo , Lisosomas/patología , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Necrosis/metabolismo , Necrosis/patología
12.
Cell Death Differ ; 25(3): 542-572, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29229998

RESUMEN

Neurodegenerative diseases are a spectrum of chronic, debilitating disorders characterised by the progressive degeneration and death of neurons. Mitochondrial dysfunction has been implicated in most neurodegenerative diseases, but in many instances it is unclear whether such dysfunction is a cause or an effect of the underlying pathology, and whether it represents a viable therapeutic target. It is therefore imperative to utilise and optimise cellular models and experimental techniques appropriate to determine the contribution of mitochondrial dysfunction to neurodegenerative disease phenotypes. In this consensus article, we collate details on and discuss pitfalls of existing experimental approaches to assess mitochondrial function in in vitro cellular models of neurodegenerative diseases, including specific protocols for the measurement of oxygen consumption rate in primary neuron cultures, and single-neuron, time-lapse fluorescence imaging of the mitochondrial membrane potential and mitochondrial NAD(P)H. As part of the Cellular Bioenergetics of Neurodegenerative Diseases (CeBioND) consortium ( www.cebiond.org ), we are performing cross-disease analyses to identify common and distinct molecular mechanisms involved in mitochondrial bioenergetic dysfunction in cellular models of Alzheimer's, Parkinson's, and Huntington's diseases. Here we provide detailed guidelines and protocols as standardised across the five collaborating laboratories of the CeBioND consortium, with additional contributions from other experts in the field.


Asunto(s)
Mitocondrias/metabolismo , Mitocondrias/patología , Modelos Biológicos , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Animales , Humanos
13.
Semin Cell Dev Biol ; 82: 127-136, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29199140

RESUMEN

Caspases are cysteine proteases that play important and well-defined roles in apoptosis and inflammation. Increasing evidence point to alternative functions of caspases where restricted and localized caspase activation within neurons allows for a variety of non-apoptotic and non-inflammatory processes required for brain development and function. In this review, we highlight sublethal caspase functions in axon and dendrite pruning, neurite outgrowth and dendrite branches formation, as well as in long-term depression and synaptic plasticity. Importantly, as non-apoptotic activity of caspases is often confined in space and time in neurons, we also discuss the mechanisms that restrict caspase activity in order to maintain the neuronal networks in a healthy and functional state.


Asunto(s)
Caspasas/metabolismo , Sistema Nervioso/fisiopatología , Animales , Apoptosis , Humanos
14.
FEBS J ; 283(24): 4569-4582, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27797453

RESUMEN

Apoptotic cell death is critical for the early development of the nervous system, but once the nervous system is established, the apoptotic pathway becomes highly restricted in mature neurons. However, the mechanisms underlying this increased resistance to apoptosis in these mature neurons are not completely understood. We have previously found that members of the miR-29 family of microRNAs (miRNAs) are induced with neuronal maturation and that overexpression of miR-29 was sufficient to restrict apoptosis in neurons. To determine whether endogenous miR-29 alone was responsible for the inhibition of cytochrome c release in mature neurons, we examined the status of the apoptotic pathway in sympathetic neurons deficient for all three miR-29 family members. Unexpectedly, we found that the apoptotic pathway remained largely restricted in miR-29-deficient mature neurons. We therefore probed for additional mechanisms by which mature neurons resist apoptosis. We identify miR-24 as another miRNA that is upregulated in the maturing cerebellum and sympathetic neurons that can act redundantly with miR-29 by targeting a similar repertoire of prodeath BH3-only genes. Overall, our results reveal that mature neurons engage multiple redundant brakes to restrict the apoptotic pathway and ensure their long-term survival.


Asunto(s)
Apoptosis/genética , Citocromos c/metabolismo , MicroARNs/genética , Neuronas/metabolismo , Regiones no Traducidas 3'/genética , Animales , Animales Recién Nacidos , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteína 11 Similar a Bcl2/genética , Proteína 11 Similar a Bcl2/metabolismo , Células Cultivadas , Ganglios/citología , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Ratones , Microscopía Fluorescente , Microscopía por Video , Mitocondrias/metabolismo , Neuronas/citología , Proteínas Proto-Oncogénicas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
15.
Mol Cell Oncol ; 3(3): e1155006, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27314098

RESUMEN

Dicer has been well studied in cancer; however, deciphering its exact function in tumorigenesis continues to be a challenge. While partial suppression or truncation of Dicer promotes tumorigenesis, its complete deletion inhibits tumor growth. Here, we discuss this Dicer cancer conundrum in the context of its recently discovered role in the DNA damage response.

16.
J Neurosci ; 36(20): 5448-61, 2016 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-27194326

RESUMEN

UNLABELLED: Apoptosis plays an essential role during brain development, yet the precise mechanism by which this pathway is regulated in the brain remains unknown. In particular, mammalian cells are known to express multiple anti-apoptotic Bcl-2 family proteins. However, the cells of the developing brain could also exist in a primed state in which the loss of a single anti-apoptotic Bcl-2 family protein is sufficient to trigger apoptosis. Here, we examined the critical role of Bcl-xL, an anti-apoptotic protein, during brain development. Using conditional knock-out mice in which Bcl-xL is deleted in neural progenitor cells (Bcl-xL(Emx1-Cre)), we show that the loss of Bcl-xL is not sufficient to trigger apoptosis in these proliferating progenitors. In contrast, specific populations of postmitotic neurons derived from these progenitors, including upper layer cortical neurons and the CA1-CA3 regions of the hippocampus, were acutely dependent on Bcl-xL. Consistent with this finding, deletion of Bcl-xL selectively in the postmitotic neurons in the brain (Bcl-xL(Nex-Cre)) also resulted in similar patterns of apoptosis. This Bcl-xL deficiency-induced neuronal death was a consequence of activation of the apoptotic pathway, because the cell death was rescued with codeletion of the proapoptotic proteins Bax and Bak. Importantly, the loss of these Bcl-xL-dependent neurons led to severe neurobehavioral abnormalities, including deficits in motor learning, hyperactivity, and increased risk-taking and self-injurious behaviors. Together, our results identify a population of neurons in the developing brain that are acutely dependent on Bcl-xL during the peak period of synaptic connectivity that are important for the establishment of higher-order complex behaviors. SIGNIFICANCE STATEMENT: Although Bcl-xL is known to inhibit apoptosis, exactly which cells in the brain are dependent on Bcl-xL has remained unclear because of the embryonic lethality of mice globally deleted for Bcl-xL. Here, we conditionally deleted Bcl-xL in the brain and found that this did not result in widespread apoptosis in the proliferating progenitors. Instead, Bcl-xL deficiency induced apoptosis in a select population of differentiated neurons predominantly in the early postnatal stages. Importantly, these Bcl-xL-dependent neurons are not essential for survival of the organism but instead regulate complex behaviors. Our results show that the selective loss of these Bcl-xL-dependent neurons results in mice exhibiting severe neurobehavioral abnormalities, including self-injurious and risk-taking behaviors, hyperactivity, and learning and memory defects.


Asunto(s)
Apoptosis , Hipocampo/metabolismo , Aprendizaje , Actividad Motora , Neuronas/metabolismo , Proteína bcl-X/metabolismo , Animales , Femenino , Hipocampo/citología , Hipocampo/crecimiento & desarrollo , Hipocampo/fisiología , Masculino , Ratones , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Células-Madre Neurales/fisiología , Neurogénesis , Neuronas/citología , Neuronas/fisiología , Proteína bcl-X/genética
17.
Curr Opin Neurobiol ; 39: 108-15, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27197022

RESUMEN

Axon degeneration is an essential part of development, plasticity, and injury response and has been primarily studied in mammalian models in three contexts: 1) Axotomy-induced Wallerian degeneration, 2) Apoptosis-induced axon degeneration (axon apoptosis), and 3) Axon pruning. These three contexts dictate engagement of distinct pathways for axon degeneration. Recent advances have identified the importance of SARM1, NMNATs, NAD+ depletion, and MAPK signaling in axotomy-induced Wallerian degeneration. Interestingly, apoptosis-induced axon degeneration and axon pruning have many shared mechanisms both in signaling (e.g. DLK, JNKs, GSK3α/ß) and execution (e.g. Puma, Bax, caspase-9, caspase-3). However, the specific mechanisms by which caspases are activated during apoptosis versus pruning appear distinct, with apoptosis requiring Apaf-1 but not caspase-6 while pruning requires caspase-6 but not Apaf-1.


Asunto(s)
Axones/metabolismo , Animales , Apoptosis/fisiología , Axones/enzimología , Caspasas/metabolismo , Degeneración Walleriana/fisiopatología
18.
Cell Rep ; 14(2): 216-24, 2016 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-26748703

RESUMEN

Maintenance of genomic integrity is critical during neurodevelopment, particularly in rapidly dividing cerebellar granule neuronal precursors that experience constitutive replication-associated DNA damage. As Dicer was recently recognized to have an unexpected function in the DNA damage response, we examined whether Dicer was important for preserving genomic integrity in the developing brain. We report that deletion of Dicer in the developing mouse cerebellum resulted in the accumulation of DNA damage leading to cerebellar progenitor degeneration, which was rescued with p53 deficiency; deletion of DGCR8 also resulted in similar DNA damage and cerebellar degeneration. Dicer deficiency also resulted in DNA damage and death in other rapidly dividing cells including embryonic stem cells and the malignant cerebellar progenitors in a mouse model of medulloblastoma. Together, these results identify an essential function of Dicer in resolving the spontaneous DNA damage that occurs during the rapid proliferation of developmental progenitors and malignant cells.


Asunto(s)
Cerebelo/metabolismo , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Células-Madre Neurales/fisiología , Ribonucleasa III/genética , Ribonucleasa III/metabolismo , Animales , Proliferación Celular , Cerebelo/citología , Daño del ADN , Ratones
19.
Proc Natl Acad Sci U S A ; 113(3): 614-9, 2016 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-26719414

RESUMEN

Since the linking of mutations in the Cu,Zn superoxide dismutase gene (sod1) to amyotrophic lateral sclerosis (ALS) in 1993, researchers have sought the connection between SOD1 and motor neuron death. Disease-linked mutations tend to destabilize the native dimeric structure of SOD1, and plaques containing misfolded and aggregated SOD1 have been found in the motor neurons of patients with ALS. Despite advances in understanding of ALS disease progression and SOD1 folding and stability, cytotoxic species and mechanisms remain unknown, greatly impeding the search for and design of therapeutic interventions. Here, we definitively link cytotoxicity associated with SOD1 aggregation in ALS to a nonnative trimeric SOD1 species. We develop methodology for the incorporation of low-resolution experimental data into simulations toward the structural modeling of metastable, multidomain aggregation intermediates. We apply this methodology to derive the structure of a SOD1 trimer, which we validate in vitro and in hybridized motor neurons. We show that SOD1 mutants designed to promote trimerization increase cell death. Further, we demonstrate that the cytotoxicity of the designed mutants correlates with trimer stability, providing a direct link between the presence of misfolded oligomers and neuron death. Identification of cytotoxic species is the first and critical step in elucidating the molecular etiology of ALS, and the ability to manipulate formation of these species will provide an avenue for the development of future therapeutic strategies.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Neuronas Motoras/patología , Multimerización de Proteína , Superóxido Dismutasa/toxicidad , Animales , Muerte Celular/efectos de los fármacos , Línea Celular , Estabilidad de Enzimas/efectos de los fármacos , Humanos , Modelos Biológicos , Modelos Moleculares , Neuronas Motoras/efectos de los fármacos , Proteínas Mutantes/toxicidad , Mutación/genética , Agregado de Proteínas/efectos de los fármacos , Conformación Proteica , Pliegue de Proteína/efectos de los fármacos , Multimerización de Proteína/efectos de los fármacos , Superóxido Dismutasa/química
20.
Cell Host Microbe ; 18(6): 649-58, 2015 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-26651941

RESUMEN

Herpes simplex virus (HSV) reactivation from latent neuronal infection requires stimulation of lytic gene expression from promoters associated with repressive heterochromatin. Various neuronal stresses trigger reactivation, but how these stimuli activate silenced promoters remains unknown. We show that a neuronal pathway involving activation of c-Jun N-terminal kinase (JNK), common to many stress responses, is essential for initial HSV gene expression during reactivation. This JNK activation in neurons is mediated by dual leucine zipper kinase (DLK) and JNK-interacting protein 3 (JIP3), which direct JNK toward stress responses instead of other cellular functions. Surprisingly, JNK-mediated viral gene induction occurs independently of histone demethylases that remove repressive lysine modifications. Rather, JNK signaling results in a histone methyl/phospho switch on HSV lytic promoters, a mechanism permitting gene expression in the presence of repressive lysine methylation. JNK is present on viral promoters during reactivation, thereby linking a neuronal-specific stress pathway and HSV reactivation from latency.


Asunto(s)
Histonas/metabolismo , Neuronas/virología , Procesamiento Proteico-Postraduccional , Simplexvirus/fisiología , Activación Viral , Animales , Células Cultivadas , Regulación de la Expresión Génica , Ratones , Fosforilación , Regiones Promotoras Genéticas , Transducción de Señal , Simplexvirus/genética , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...